Minimum message length estimation of mixtures of multivariate Gaussian and von Mises-Fisher distributions*

Parthan Kasarapu, Lloyd Allison

Faculty of Information Technology, Monash University

parthan.kasarapu,lloyd.allison,(@monash.edu)

volving many probability distributions, demonstrated here using the multivariate Gaussian and also the von Mises-Fisher (vMF) directional probability distribution. The effectiveness and practical utility is shown by applications in text clustering and mixture modelling of protein spatial orientation data.

- Figure 1: How many mixture components?
- Statistical model selection is important.
- Several competing models: which one to choose?
- A criterion to compare models with the ability to compare models belonging to the same model class.
- Based on the model's complexity and the goodness-of-fit

2. Minimum Message Length Framework

A Bayesian-information theoretic criterion to model data \mathcal{D} using a hypothesis \mathcal{H} (Wallace and Boulton, 1968)

Figure 2: Progression of the search for the optimal mixture.

-Merge: A pair of close components are merged to find an optimal (M-1)-component mixture.

The perturbations provide the best chance for the intermediate mixture to escape a local optimum.

• The perturbed mixture with the greatest improvement to the two-part message length is retained. The procedure is repeated until there is no improvement.

Figure 3: Variation of the individual parts of the total message length with increasing components.

5. Performance of the search method

• Bayes's theorem: $Pr(\mathcal{H} \& \mathcal{D}) = Pr(\mathcal{H}) \times Pr(\mathcal{D} | \mathcal{H})$

• Shannon's observation: $I(\mathcal{H}) = -\log \Pr(\mathcal{H})$

The total message length to describe \mathcal{D} using a mixture with M component probability distributions:

- 1. *First part:* Encoding cost of the mixture weights and the parameters of the components.
- 2. Second part: Encoding cost of the data using the Mcomponent mixture.

The MML framework is able to distinguish models belonging to the *same* model class. For example, all *M*-component mixtures have different first part message lengths depending on their constituent parameters.

3. Objectives

• MML-based estimation of the parameters of the multivariate Gaussian and von Mises-Fisher distributions.

As compared to the maximum likelihood estimators, the derived MML estimates have *lower* bias, mean-squared error, and Kullback-Leibler (KL) divergence.

Figure 4: Results of the 10-dimensional Gaussian mixture simulations compared to that of Figueiredo and Jain (2002) (a) Percentage of correct selections with varying δ (separation between the component means) for a fixed sample size of N = 800(b) Average number of inferred mixture components with different sample sizes and $\delta = 1.20$. (c) Difference in message lengths of inferred mixtures (d) Box-whisker plot of KL-divergence of inferred mixtures.

6. Mixture modelling using von Mises-Fisher distributions

Mixture modelling of protein directional data

• Data corresponds to unit vectors on the sphere. • Set of co-latitude $\theta \in [0, \pi]$ and longitude $\phi \in [0, 2\pi)$ pairs.

Text clustering

• Data corresponds to the *normalized vector representations* of text documents (Banerjee et al., 2005).

• A generalized MML-based search heuristic to infer the optimal number of mixture components that best explain the observed data. The search implements a generic approach to mixture modelling and allows, in this instance, the use of *d*-dimensional Gaussian and vMF distributions.

The proposed methodology:

- Includes an accurate MML formulation unlike the MMLlike approximation of Figueiredo and Jain (2002).
- -Makes no assumptions pertaining to the form of the component distribution.

• The vMF *directional* probability distribution is used to model unit vectors on the surface of a unit hypersphere.

Clusters		Evaluation motric	Methods of vMF parameter estimation				
True	Inferred		Banerjee	Tanabe	Sra	Song	MML
3	3	Message length	100678069	100677085	100677087	100677080	100676891
		Avg. F-measure	0.9644	0.9758	0.9758	0.9780	0.9761
		Mutual Information	0.944	0.975	0.975	0.982	0.976
20	21	Message length	728497453	728498076	728432625	728374429	728273820
		Mutual Information	1.313	1.229	1.396	1.377	1.375

Table 1: Clustering performance on the two datasets: (a) Classic3 (b) CMU_Newsgroup. The MML mixtures *consistently* have lower message lengths.

References

**Machine Learning:* volume 100, issue 2 (2015), pp. 333-378

ECML-PKDD, 7 - 11 September 2015, Porto, Portugal

A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra. Clustering on the unit hypersphere using von Mises-Fisher distributions. *Journal* of Machine Learning Research, 6:1345–1382, 2005.

M. A. T. Figueiredo and A. K. Jain. Unsupervised learning of finite mixture models. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(3):381–396, 2002.

C. S. Wallace and D. M. Boulton. An information measure for classification. *Computer Journal*, 11(2):185–194, 1968.