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Abstract

Mixture modelling problem involves the inference of an optimal
number of mixture components and their corresponding pa-
rameters. This paper discusses unsupervised learning of mix-
ture models using the Bayesian inference paradigm of Mini-
mum Message Length (MML). We propose a search method
that is able to model the given data using a mixture of probabil-
ity distributions by reliably balancing the trade-off between the
mixture’s complexity and its goodness-of-fit. The proposed in-
ference method generalizes to mixture modelling problems in-
volving many probability distributions, demonstrated here us-
ing the multivariate Gaussian and also the von Mises-Fisher
(vMF) directional probability distribution. The effectiveness
and practical utility is shown by applications in text clustering
and mixture modelling of protein spatial orientation data.

1. Motivation
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Figure 1: How many mixture components?

• Statistical model selection is important.
• Several competing models: which one to choose?

– A criterion to compare models with the ability to compare
models belonging to the same model class.

– Based on the model’s complexity and the goodness-of-fit

2. Minimum Message Length Framework

A Bayesian-information theoretic criterion to model data D us-
ing a hypothesis H (Wallace and Boulton, 1968)
• Bayes’s theorem: Pr(H&D) = Pr(H)× Pr(D|H)
• Shannon’s observation: I(H) = − log Pr(H)

MML criterion: I(H&D)︸ ︷︷ ︸
Total

=

Complexity︷ ︸︸ ︷
I(H)︸ ︷︷ ︸

First part

+

Goodness-of-fit︷ ︸︸ ︷
I(D|H)︸ ︷︷ ︸

Second part
Optimal model: argmin

H
I(H&D)

The total message length to describe D using a mixture with
M component probability distributions:
1. First part: Encoding cost of the mixture weights and the

parameters of the components.
2. Second part: Encoding cost of the data using the M -

component mixture.
The MML framework is able to distinguish models belonging
to the same model class. For example, all M -component mix-
tures have different first part message lengths depending on
their constituent parameters.

3. Objectives

•MML-based estimation of the parameters of the multivariate
Gaussian and von Mises-Fisher distributions.

As compared to the maximum likelihood estimators, the
derived MML estimates have lower bias, mean-squared
error, and Kullback-Leibler (KL) divergence.

• A generalized MML-based search heuristic to infer the op-
timal number of mixture components that best explain the
observed data. The search implements a generic approach
to mixture modelling and allows, in this instance, the use of
d-dimensional Gaussian and vMF distributions.

The proposed methodology:
– Includes an accurate MML formulation unlike the MML-

like approximation of Figueiredo and Jain (2002).
– Makes no assumptions pertaining to the form of the

component distribution.

*Machine Learning: volume 100, issue 2 (2015), pp. 333-378

4. Proposed Search Method
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(a) one-component (I = 22793 bits)
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(b) Red component is being split.
X

-4 -2 0 2 4

Y

-4

-3

-2

-1

0

1

2

3

4

(c) post-EM (I = 22673 bits)
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(d) Initial means (black dots)
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(e) Children (I = 22691 bits)
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(f) post-EM (I = 22460 bits)
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(g) Green ellipse is deleted
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(h) EM initialization (I = 25599 bits)
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(i) post-EM (I = 22793 bits)
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(j) Blue ellipses are merged
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(k) EM initialization
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(l) mixture post-EM (I = 22793 bits)

Figure 2: Progression of the search for the optimal mixture.

• Begin with a one-component mixture.
• At any intermediate stage, the components of

a M -component mixture are perturbed using
split, delete, and merge operations.
– Split: A parent component is split to find lo-

cally optimal children leading to a (M + 1)-
component mixture.

– Delete: A component is deleted to find an op-
timal (M − 1)-component mixture.

– Merge: A pair of close components are
merged to find an optimal (M−1)-component
mixture.

The perturbations provide the best chance for
the intermediate mixture to escape a local op-
timum.

• The perturbed mixture with the greatest im-
provement to the two-part message length is
retained. The procedure is repeated until there
is no improvement.
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Figure 3: Variation of the individual parts of the to-
tal message length with increasing components.

5. Performance of the search method
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Figure 4: Results of the 10-dimensional Gaussian mixture simulations compared to that of Figueiredo and Jain (2002) (a)
Percentage of correct selections with varying δ (separation between the component means) for a fixed sample size of N = 800
(b) Average number of inferred mixture components with different sample sizes and δ = 1.20. (c) Difference in message lengths
of inferred mixtures (d) Box-whisker plot of KL-divergence of inferred mixtures.

6. Mixture modelling using von Mises-Fisher distributions

Mixture modelling of protein directional data
•Data corresponds to unit vectors on the sphere.
• Set of co-latitude θ ∈ [0, π] and longitude φ ∈ [0, 2π) pairs.
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Text clustering
•Data corresponds to the normalized vector representations

of text documents (Banerjee et al., 2005).
• The vMF directional probability distribution is used to model

unit vectors on the surface of a unit hypersphere.

Clusters Evaluation metric Methods of vMF parameter estimation
True Inferred Banerjee Tanabe Sra Song MML

3 3
Message length 100678069 100677085 100677087 100677080 100676891
Avg. F-measure 0.9644 0.9758 0.9758 0.9780 0.9761

Mutual Information 0.944 0.975 0.975 0.982 0.976

20 21 Message length 728497453 728498076 728432625 728374429 728273820
Mutual Information 1.313 1.229 1.396 1.377 1.375

Table 1: Clustering performance on the two datasets: (a) Clas-
sic3 (b) CMU Newsgroup. The MML mixtures consistently
have lower message lengths.
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