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Abstract

My thesis explores the problem of model selection and infer-
ence based on the Bayesian information-theoretic principle of
minimum message length (MML). The inference framework has
enabled the selection of optimal models by using the constituent
parameters to better balance the trade-off between the model’s
complexity and its goodness-of-fit to the data. This is demon-
strated in the context of mixture modelling of probability dis-
tributions by developing a generic search method to determine
the optimal number of mixture components that describe the
given data. This modelling paradigm is explored in detail on
a variety of real-world data, specifically on spatial orientation
data of protein three-dimensional structures. Furthermore, the
framework has been used for concise representations of protein
folding patterns using a combination of non-linear parametric
curves. Results of this work have a wide-variety of uses includ-
ing direct applications in protein structural biology.

Research Aims

• MML-based parameter estimation of some relevant directional
probability distributions amongst others.

• Design of a general mixture modelling apparatus to enable the
optimal selection of the number of mixture components.

• Specific applications in protein structure modelling.

Motivation
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Figure 1: Into how many classes would you classify the data?

• Statistical model selection is important.
• Several competing models: which one to choose?

• A criterion to compare models ...
• Based on the model’s complexity and the goodness-of-fit

Minimum Message Length Framework

Inference methodology to model data D using a hypothesis H
• Bayes’s theorem: Pr(H&D) = Pr(H)× Pr(D|H)
• Shannon’s observation: I(H) = − log Pr(H)

MML criterion: I(H&D) = I(H)︸ ︷︷ ︸
First part

+ I(D|H)︸ ︷︷ ︸
Second part

Optimal model: arg min
H

I(H&D)

Function approximation

Increasing the number of terms decreases the error of fit at the
expense of an overly complex model.

f (x) =


x

T
if x ∈ [0, T )

f (x− T ) if x ≥ T

f (x + T ) if x < 0

f (x) = a0 +
∞∑
n=1

(
an cos 2nπx

T
+ bn sin 2nπx

T

)
︸ ︷︷ ︸

Fourier decomposition
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(a) Fourier approximations
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(b) Variation of the message length
Figure 2: Approximating the Fourier expansion of a Sawtooth function

Abstracting protein folding patterns

(a) Secondary structure representation (b) A lossy representation

(c) Competing Bézier segmentations

An optimal segmentation achieves to maximize the economy of
description and minimize the loss of structural information by
minimizing the two-part message length
1 First part: Explain the segmentation
2 Second part: Explain the protein coordinates using the segmentation

Modelling the protein directional data

The directional data corresponding to the protein back-
bone is generated in a consistent canonical orientation.
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• Data corresponds to unit vectors on the sphere.
• Set of co-latitude θ ∈ [0, π] and longitude φ ∈ [0, 2π) pairs.
• Modelled using directional probability distributions.

Figure 3: Empirical distribution (different orientations of the sphere).

Directional distributions defined on the surface of the sphere:
von Mises-Fisher (vMF) and Kent distributions.
• vMF can model symmetrically distributed directional data.
• Kent distribution is suitable to model asymmetrical data as it
has an eccentricity parameter controlled by β.

Kent density ∝ exp{ κγγγT1 x︸ ︷︷ ︸
linear term

+ β(γγγT2 x)2 − β(γγγT3 x)2︸ ︷︷ ︸
non-linear term

}

• Kent is a generalization of the vMF distribution (κ > 0 and β = 0). In
comparison, for a uniform distribution on the sphere, κ = β = 0.

• Shown below are example illustrations of Kent distributions with
eccentricities 0 (corresponding to a vMF), 0.5 and 0.9 respectively.

Modelling performance

Modelling distribution Message length (in bits) Bits per residue
Uniform 6.895 ×106 27.434

vMF mixture 6.449 ×106 25.656
Kent mixture 6.442 ×106 25.630

The Kent mixture serves as a superior null model that pro-
vides a benchmark in terms of the amount of compression
to describe a database of protein structures.
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(a) vMF mixture (37 components)
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(b) Kent mixture (23 components)
Figure 4: Contours of vMF and Kent mixture components (θ and φ in degrees)

Modelling protein dihedral angles

The protein backbone dihedral angle pairs (φ, ψ) are different
from the previously considered directional data.

• φ, ψ ∈ [0, 2π), and hence, cannot be modelled using Kent distributions.
• The dihedral angles, are therefore, modelled using mixtures of bivariate

von Mises distributions defined on the surface of a torus.

Figure 5: Shown above is the empirical distribution of the dihedral angles.
An example realization of the bivariate von Mises (on the right) demonstrates
the suitability to model the data using mixtures of toroidal distributions.


