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Abstract Mixture modelling involves explaining some observed evidence using a combina-
tion of probability distributions. The crux of the problem is the inference of an optimal number
of mixture components and their corresponding parameters. This paper discusses unsuper-
vised learning of mixture models using the Bayesian Minimum Message Length (MML)
criterion. To demonstrate the effectiveness of search and inference of mixture parameters
using the proposed approach, we select two key probability distributions, each handling
fundamentally different types of data: the multivariate Gaussian distribution to address mix-
ture modelling of data distributed in Euclidean space, and the multivariate von Mises-Fisher
(vMF) distribution to address mixture modelling of directional data distributed on a unit
hypersphere. The key contributions of this paper, in addition to the general search and infer-
ence methodology, include the derivation of MML expressions for encoding the data using
multivariate Gaussian and von Mises-Fisher distributions, and the analytical derivation of the
MML estimates of the parameters of the two distributions. Our approach is tested on sim-
ulated and real world data sets. For instance, we infer vMF mixtures that concisely explain
experimentally determined three-dimensional protein conformations, providing an effective
null model description of protein structures that is central to many inference problems in
structural bioinformatics. The experimental results demonstrate that the performance of our
proposed search and inference method along with the encoding schemes improve on the state
of the art mixture modelling techniques.
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1 Introduction

Mixture models are common tools in statistical pattern recognition (McLachlan and Basford
1988). They offer a mathematical basis to explain data in fields as diverse as astronomy,
biology, ecology, engineering, and economics, amongst many others (McLachlan and Peel
2000). A mixture model is composed of component probabilistic models; a component may
variously correspond to a subtype, kind, species, or subpopulation of the observed data. These
models aid in the identification of hidden patterns in the data through sound probabilistic
formalisms. Mixture models have been extensively used in machine learning for tasks such
as classification and unsupervised learning (Titterington et al. 1985; McLachlan and Peel
2000).

Formally, mixture modelling involves representing a distribution of data as a weighted sum
of individual probability distributions. Specifically, the problem we consider here is to model

the observed data using a mixture M of the form: Pr(x;M ) =
∑M

j=1
w j f j (x;Θ j ), where

x is a d-dimensional datum, M is the number of mixture components, w j and f j (x;Θ j )

are the weight and probability density of the j th component respectively; the weights are
positive and sum to one. The problem of modelling some observed data using a mixture
distribution involves determining the number of components M , and estimating the mix-
ture parameters. Inferring the optimal number of mixture components involves the difficult
problem of balancing the trade-off between two conflicting objectives: low hypothesis com-
plexity as determined by the number of components and their respective parameters, versus
good quality of fit to the observed data. Generally, a hypothesis with more free parameters
can fit observed data better than a hypothesis with fewer parameters. A number of strate-
gies have been used to control this balance (see Sect. 6). These methods provide varied
formulations to assess the mixtures and their ability to explain the data. Methods using
the minimum message length criterion, a Bayesian method of inductive inference, have
been proved to be effective in achieving a reliable balance between these conflicting aims
(Wallace and Boulton 1968; Oliver et al. 1996; Roberts et al. 1998; Figueiredo and Jain
2002).

Although much of the literature concerns the theory and application of Gaussian mixtures,
mixture modelling using other probability distributions has been widely used. Some exam-
ples are: Poisson (Wang et al. 1996), exponential (Seidel et al. 2000), Laplace (Jones and
McLachlan 1990), t-distribution (Peel and McLachlan 2000), Weibull (Patra and Dey 1999),
Kent (Peel et al. 2001), von Mises-Fisher (Banerjee et al. 2005). The use of Gaussian mix-
tures in several research disciplines has been partly motivated by its computational tractability
(McLachlan and Peel 2000). For data where the direction of the constituent vectors is impor-
tant, Gaussian mixtures are inappropriate and distributions such as the von Mises-Fisher may
be used (Mardia et al. 1979; Banerjee et al. 2005). In any case, for any kind of component
distribution, one needs to estimate the mixture parameters, and provide a sound justification
for selecting the appropriate number of components. Software for mixture modelling relies
on the following elements: (1) an estimator of the parameters of each component of a mix-
ture, (2) an objective function, that can be used to score as well as compare two mixtures and
decide which is better, and (3) a search strategy for the best number of components and their
weights.

Traditionally, parameter estimation is done using maximum likelihood (ML) or maximum
a posteriori probability (MAP) based estimation. In this work, we use the Bayesian minimum
message length (MML) principle. Unlike MAP, MML estimators are invariant under non-
linear transformations of the data (Oliver and Baxter 1994), and unlike ML, It has been used
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in the inference of several probability distributions (Wallace 2005). MML-based inference
operates by considering the problem as encoding first the parameters and then the data given
those parameters. The values that result in the least overall message length to explain the
whole data are taken as the MML estimates for an inference problem. The MML scheme
thus incorporates the cost of stating parameters into model selection. It is self evident that a
continuous parameter value can only be stated to some finite precision; the cost of encoding
a parameter is determined by its prior and the precision. ML estimation ignores the cost of
stating a parameter and MAP based estimation uses the probability density of a parameter
instead of its probability measure. In contrast, the MML inference process calculates the
optimal precision to which parameters should be stated and a corresponding probability
value is then computed. This is used to calculate the message length corresponding to those
estimates. Thus, models with varying parameters are evaluated based on their resultant total
message lengths. We use this characteristic property of MML to evaluate mixtures with
different numbers of components.

Although there have been several attempts to address the challenges of mixture modelling,
the existing methods have some limitations in their formalism (see Sect. 6). In particular,
some methods based on MML are incomplete in their formulation. We aim to rectify these
drawbacks by proposing a comprehensive MML formulation and develop a search heuristic
that selects the number of mixture components based on the proposed formulation. To demon-
strate the effectiveness of the proposed search and parameter estimation, we first consider
modelling problems using Gaussian mixtures and include relevant discussion on mixture
modelling of directional data using von Mises-Fisher distributions.

The conventional method of estimating the parameters of a mixture, for a given num-
ber of components, relies on the Expectation–Maximization (EM) algorithm (Dempster
et al. 1977). Previous attempts to infer Gaussian mixtures based on the MML frame-
work have been undertaken using simplifying assumptions, such as the covariance matrices
being diagonal (Oliver et al. 1996), or coarsely approximating the probabilities of mix-
ture parameters (Roberts et al. 1998; Figueiredo and Jain 2002). Further, the search
heuristic adopted in some of these methods is to run the EM several times for differ-
ent numbers of components, M , and select the M with the best EM outcome (Oliver
et al. 1996; Roberts et al. 1998; Biernacki et al. 2000). A search method based on iter-
atively deleting components has been proposed by Figueiredo and Jain (2002). It begins
by assuming a very large number of components and selectively eliminates components
deemed redundant; there is no provision for recovering from deleting a component in
error.

In this work, we propose a search method which selectively splits, deletes, or merges
components depending on improvement to the MML objective function. The operations,
combined with EM steps, result in a sensible redistribution of data between the mixture
components. As an example, a component may be split into two children, and at a later
stage, one of the children may be merged with another component. Unlike the method of
Figueiredo and Jain (2002), our method starts with a one-component mixture and alters the
number of components in subsequent iterations. This avoids the overhead of dealing with a
large number of components unless required.

The proposed search heuristic can be used with probability distributions for which the
MML expressions to calculate message lengths for estimates and for data given those esti-
mates are known. As an instance of this, Sect. 7 discusses mixture modelling of directional
data. The statistical properties of directional data have been studied using several types of
distributions (Fisher 1953; Watson and Williams 1956; Fisher 1993; Mardia and Jupp 2000),
often described on surfaces of compact manifolds, such as the sphere, ellipsoid, torus etc. The
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most fundamental of these is the von Mises-Fisher (vMF) distribution which is analogous to
a symmetric multivariate Gaussian distribution, wrapped around a unit hypersphere (Watson
and Williams 1956). The estimation of the parameters of the vMF distribution is often done
using maximum likelihood. However, the complex nature of the mathematical form presents
difficulty in estimating the concentration parameter κ . This has lead to researchers using
many different approximations, as discussed in Sect. 2.2. Most of these methods perform
well when the amount of data is large. At smaller sample sizes, they result in inaccurate
estimates of κ , and are thus unreliable. We demonstrate this by the experiments conducted on
a range of sample sizes. The problem is particularly evident when the dimensionality of the
data is large, also affecting the application in which it is used, such as mixture modelling. We
aim to rectify this issue by using MML estimates for κ . Our experiments section demonstrates
that the MML estimate of κ provides a more reliable answer and is an improvement on the
current state of the art. These MML estimates are subsequently used in mixture modelling
of vMF distributions (see Sects. 7 and 10). Previous studies have established the importance
of vMF mixture models with demonstrated applications to clustering of protein dihedral
angles (Mardia et al. 2007; Dowe et al. 1996a), large-scale text clustering (Banerjee et al.
2003), and gene expression analyses (Banerjee et al. 2005). The merit of using cosine based
similarity metrics, which are closely related to the vMF, for clustering high dimensional text
data has been investigated in Strehl et al. (2000). For text clustering, there is evidence that
vMF mixture models have a superior performance compared to other statistical distributions
(Salton and McGill 1986; Salton and Buckley 1988; Zhong and Ghosh 2003; Banerjee et al.
2005).

Contributions: The main contributions of this paper are as follows:

– We derive the analytical estimates of the parameters of a multivariate Gaussian distribu-
tion with full covariance matrix, using the MML principle (Wallace and Freeman 1987).

– We derive the expression to infer the concentration parameter κ of a generic d-
dimensional vMF distribution using MML-based estimation. We demonstrate, through a
series of experiments, that this estimate outperforms the previous ones, therefore making
it a reliable candidate to be used in mixture modelling.

– A generalized MML-based search heuristic is proposed to infer the optimal number
of mixture components that would best explain the observed data. The search imple-
ments a generic approach to mixture modelling and allows, in this instance, the use of
d-dimensional Gaussian and vMF distributions under the MML framework. We com-
pare it with the widely cited work of Figueiredo and Jain (2002) and demonstrate its
effectiveness.

The rest of the paper is organized as follows: Sect. 2 describes the commonly used estimators
of Gaussian and vMF distributions. Section 3 introduces the MML inference framework.
Section 4 outlines the derivation of the MML parameter estimates of multivariate Gaussian
and vMF distributions. Section 5 describes the formulation of a mixture model using MML
and the estimation of the mixture parameters under the framework. Section 6 reviews the
existing methods for selecting the mixture components. Section 7 describes our proposed
approach to determine the number of mixture components. Section 8 depicts the competi-
tive performance of the proposed MML-based search through experiments conducted with
Gaussian mixtures. Section 9 presents the results for MML-based vMF parameter estimation
followed by results supporting the application of vMF mixtures to text clustering and protein
structural data in Sect. 10. An extended version of the paper is available at http://arxiv.org/
abs/1502.07813.
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2 Existing methods of estimating the parameters of Gaussian and von
Mises-Fisher distributions

2.1 Gaussian parameter estimates

The probability density of a d-variate Gaussian distribution is given by Eq. 1 where μ, C
are the respective mean, covariance matrix of the distribution, and |C| is the determinant of
the covariance matrix. Given data D = {x1, . . . , xN }, where xi ∈ R

d , the log-likelihood L
is given by Eq. 2. To compute the traditional maximum likelihood estimates, L needs to be
maximized. This is achieved by computing the gradient of the log-likelihood function with
respect to the parameters and solving the resultant equations.

f (x;μ,C) = 1

(2π)
d
2 |C| 1

2

e− 1
2 (x−μ)TC−1(x−μ) (1)

L (D|μ,C) = −Nd

2
log(2π) − N

2
log |C| − 1

2

N∑

i=1

(xi − μ)TC−1(xi − μ) (2)

The gradient vector of L with respect to μ and the gradient matrix of L with respect to C
are given below. The maximum likelihood estimates are obtained by solving ∇μL = 0 and
∇CL = 0.

∇μL = ∂L

∂μ
=

N∑

i=1

C−1(xi − μ) and

∇CL = ∂L

∂C
= −N

2
C−1 + 1

2

N∑

i=1

C−1(xi − μ)(xi − μ)TC−1 (3)

The estimates are given as μ̂ = 1

N

N∑

i=1

xi and ĈML = 1

N

N∑

i=1

(xi−μ̂)(xi−μ̂)T . ĈML is known

to be a biased estimate of the covariance matrix (Barton 1961; Basu 1964; Eaton and Morris
1970; White 1982) and issues related with its use in mixture modelling have been documented
in Gray (1994) and Lo (2011). An unbiased estimator ofCwas proposed by Barton (1961) and

is given as Ĉunbiased = 1

N − 1

N∑

i=1

(xi − μ̂)(xi − μ̂)T . In addition to the maximum likelihood

estimates, Bayesian inference of Gaussian parameters involving conjugate priors over the
parameters has also been dealt with in the literature (Bishop 2006). However, the unbiased
estimate of the covariance matrix, as determined by the sample covariance, is typically used
in the analysis of Gaussian distributions.

2.2 Parameter estimates of a von Mises-Fisher distribution

The probability density function of a vMF distribution with parameters Θ = (μ, κ) ≡ (mean
direction, concentration parameter) for a random unit vector x ∈ R

d on a (d−1)- dimensional
hypersphere S

d−1 is given by Eq. 4, where Cd(κ) is the normalization constant and Iv is a
modified Bessel function of the first kind and order v. Given data D = {x1, . . . , xN }, such
that xi ∈ S

d−1, the log-likelihood L is given by Eq. 5.
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f (x;μ, κ) = Cd(κ)eκμT x such that Cd(κ) = κd/2−1

(2π)d/2 Id/2−1(κ)
(4)

L (D|μ, κ) = N logCd(κ) + κμTR where R =
N∑

i=1

xi (5)

Let R denote the magnitude of the resultant vectorR. Let μ̂ and κ̂ be the maximum likelihood
estimators of μ and κ respectively. Under the constraint that μ̂ is a unit vector, these estimates
are obtained by maximizing L as follows:

μ̂ = R
R

, κ̂ = A−1
d (R̄) where Ad(κ) = −C ′

d(κ)

Cd(κ)
= Id/2(κ)

Id/2−1(κ)
(6)

Solving the non-linear equation: F(κ̂) ≡ Ad(κ̂)− R̄ = 0 yields the corresponding maximum
likelihood estimate of the concentration parameter κ . As it is difficult to analytically solve
Eq. (6), there have been several approaches proposed to approximate κ̂ . Each of them is an
improvement over their respective predecessors. Tanabe et al. (2007) is an improvement over
the estimate proposed by Banerjee et al. (2005). Sra (2012) is an improvement over Tanabe
et al. (2007) and Song et al. (2012) fares better when compared to Sra (2012). These are
briefly summarized below.
Banerjee’s approximation: Banerjee et al. (2005) provide an easy to use expression for κ̂ .
The formula is very appealing as it eliminates the need to evaluate complex Bessel func-
tions. Banerjee et al. (2005) demonstrated that their approximation κB (see Eq. 7) yields
better results compared to the ones suggested in Mardia and Jupp (2000). It is an empirical
approximation which can be used as a starting point in evaluating the root of Eq. 6.

κB = R̄(d − R̄2)

1 − R̄2
(7)

Tanabe’s approximation: Tanabe et al. (2007) utilize the properties of Bessel functions to
determine the lower and upper bounds for κ̂ . A fixed point iteration function defined by
φ2d(κ) = R̄κAd(κ)−1 in conjunction with linear interpolation is then used to approximate
κ̂ . The approximation κT along with the bounds κl and κu are given below:

κT = κlφ2d(κu) − κuφ2d(κl)

(φ2d(κu) − φ2d(κl)) − (κu − κl)
where κl = R̄(d − 2)

1 − R̄2
≤ κ̂ ≤ κu = R̄d

1 − R̄2

Sra’s Truncated Newton approximation: A heuristic approximation proposed by Sra (2012)
involves refining the approximation of Banerjee et al. (2005) (Eq. 7). Sra’s approximation
κN is obtained by performing two iterations of Newton’s method as follows:

κ1 = κB − F(κB)

F ′(κB)
and κN = κ1 − F(κ1)

F ′(κ1)

where F ′(κ) = A′
d(κ) = 1 − Ad(κ)2 − (d − 1)

κ
Ad(κ) (8)

Song’s Truncated Halley approximation: The approximation due to Song et al. (2012) uses
Halley’s method which is the second order expansion of Taylor’s series of a function F(κ).
The higher order approximation gives a more accurate estimate as demonstrated by Song
et al. (2012). The iterative Halley’s method is truncated after two steps of the root finding
algorithm (similar to that done by Sra 2012). The following two iterations result in their
approximation κH :
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κ1 = κB − 2F(κB)F ′(κB)

2F ′(κB)2 − F(κB)F ′′(κB)
and

κH = κ1 − 2F(κ1)F ′(κ1)

2F ′(κ1)2 − F(κ1)F ′′(κ1)

where F ′′(κ) = A′′
d(κ) = 2Ad(κ)3 + 3(d − 1)

κ
Ad(κ)2 + (d2 − d − 2κ2)

κ2 Ad(κ)

− (d − 1)

κ
(9)

The common theme in all these methods is that they try to approximate the maximum likeli-
hood estimate governed by Eq. (6). It is to be noted that the maximum likelihood estimators
of κ have considerable bias (Schou 1978; Best and Fisher 1981; Cordeiro and Vasconcel-
los 1999). To counter this effect, we explore the MML-based estimation procedure. This
Bayesian method of estimation not only results in an unbiased estimate but also provides a
framework to choose from several competing models (Wallace and Freeman 1987). Dowe
et al. (1996c) have demonstrated the superior performance of the MML estimate for a three-
dimensional vMF distribution. We extend their work to derive the MML estimators for
a generic d-dimensional vMF distribution and compare its performance with the existing
methods.

3 Minimum message length (MML) inference

Model selection using MML: Wallace and Boulton (1968) developed the first practical crite-
rion for model selection based on information theory. As per Bayes’s theorem, Pr(H&D) =
Pr(H) × Pr(D|H) = Pr(D) × Pr(H |D) where D denotes observed data, and H some
hypothesis about that data. Further, Pr(H&D) is the joint probability, Pr(H) and Pr(D) are
the prior probabilities of hypothesis H and data D respectively, Pr(H |D) is the posterior
probability, and Pr(D|H) is the likelihood. As per Shannon (1948), given an event E with
probability Pr(E), the length of the optimal lossless code to represent that event requires
I (E) = − log2(Pr(E)) bits. Applying Shannon’s insight to Bayes’s theorem, Wallace and
Boulton (1968) got the relationship for I (H&D) = I (H) + I (D|H) = I (D) + I (H |D).
As a result, given two competing hypotheses H and H ′, the difference in message lengths
�I gives the posterior log-odds ratio between the two.

�I = I (H&D) − I (H ′&D) = I (H |D) − I (H ′|D) bits. �⇒ Pr(H ′|D) = 2�I Pr(H |D)

(10)

I (H&D) can be interpreted as the total cost to encode a message comprising of the following
two parts: (1) the hypothesis H , which takes I (H) bits, and (2) the observed data D using
knowledge of H , which takes I (D|H) bits. The framework provides a rigorous means to
objectively compare two competing hypotheses. A more complex H may explain D better
but takes more bits to be stated itself. The trade-off comes from the fact that (hypothetically)
transmitting the message requires the encoding of both the hypothesis and the data given the
hypothesis, that is, the model complexity I (H) and the goodness of fit I (D|H).
MML based parameter estimation: Wallace and Freeman (1987) introduced a generalized
framework to estimate a set of parameters Θ given data D. The method requires a reason-
able prior h(Θ) on the hypothesis and evaluating the determinant of the Fisher information
matrix |F (Θ)| of the expected second-order partial derivatives of the negative log-likelihood
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function, L (D|Θ). The parameter vector Θ that minimizes the message length expression
(given by Eq. 11) is the MML estimate, where p is the number of free parameters in the
model, and qp is the p-dimensional lattice quantization constant (Conway and Sloane 1984).
The total message length I (Θ, D), therefore, comprises of two parts: (1) the cost of encoding
the parameters, I (Θ), and (2) the cost of encoding the data given the parameters, I (D|Θ).

I (Θ, D) = p

2
log qp − log

(
h(Θ)√|F (Θ)|

)

︸ ︷︷ ︸
I()

+L (D|Θ) + p

2︸ ︷︷ ︸
I(D|)

(11)

In ML estimation, the encoding cost of parameters is, in effect, considered constant, and
minimizing the message length corresponds to minimizing the negative log-likelihood of
the data (the second part). In MAP based estimation, a probability density rather than the
probability is used. It is self evident that continuous parameter values can only be stated to
some finite precision; MML incorporates this in the framework by determining the volume

of the uncertainty region in which the parameter is centred as V = q−p/2
p√|F (Θ)| . This product

of V and the density h(Θ) gives the probability of a particular Θ which is used to compute
the message length associated with encoding the continuous valued parameters.

4 Derivation of the MML parameter estimates of Gaussian and von
Mises-Fisher distributions

Based on the MML inference process discussed in Sect. 3, we now proceed to formulate
the message length expressions and derive the parameter estimates of Gaussian and von
Mises-Fisher distributions.

4.1 MML-based parameter estimation of a multivariate Gaussian distribution

The MML framework requires the statement of parameters to a finite precision. The optimal
precision is related to the Fisher information and in conjunction with a reasonable prior, the
probability of parameters is computed.
Prior probability of the parameters:A flat prior is usually chosen on each of the d dimensions
of μ (Roberts et al. 1998; Oliver et al. 1996) and a conjugate inverted Wishart prior is chosen
for the covariance matrix C (Gauvain and Lee 1994; Agusta and Dowe 2003; Bishop 2006).

The joint prior density of the parameters is then given as h(μ,C) ∝ |C|− d+1
2 .

Fisher information of the parameters:The computation of the Fisher information requires the
evaluation of the second order partial derivatives of −L (D|μ,C). Let |F (μ,C)| represent
the determinant of the Fisher information matrix. This is equal to the product of |F (μ)| and
|F (C)| (Oliver et al. 1996; Roberts et al. 1998), where |F (μ)| and |F (C)| are the respective
determinants of Fisher information matrices due to the parameters μ and C.

On differentiating the gradient vector in Eq. 3 with respect to μ, we get ∇2
μL = −N C−1.

Consequently, |F (μ)| = Nd |C|−1. To compute |F (C)|, Magnus and Neudecker (1988)
derived an analytical expression using the theory of matrix derivatives based on matrix vec-
torization (Dwyer 1967). LetC = [ci j ] ∀1 ≤ i, j ≤ d where ci j is the element corresponding
to the i th row and j th column of the matrix. Let v(C) = (c11, . . . , c1d , c22, . . . , c2d , . . . , cdd)
be the vector containing the d(d+1)/2 free parameters that completely describe the symmet-
ric matrix C. Then, the Fisher information due to the vector of parameters v(C) is equal to
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|F (C)| and is given as N
d(d+1)

2 2−d |C|−(d+1) (Magnus and Neudecker 1988; Bozdogan 1990).

Multiplying the Fisher expressions for μ and C, we get |F (μ,C)| = N
d(d+3)

2 2−d |C|−(d+2).
Message length formulation: To derive the message length expression to encode data using
certain μ,C, substitute the expressions for h(μ,C), |F (μ,C)|, and the negative log-
likelihood (Eq. 2) in Eq. 11 with the number of free parameters as p = d(d+3)/2. Hence, the

message length is I (μ,C, D) = (N − 1)

2
log |C|+ 1

2

N∑

i=1

(xi −μ)TC−1(xi −μ)+constant.

To obtain the MML estimates of μ and C, I (μ,C, D) needs to be minimized. The MML
estimate of μ is same as the maximum likelihood estimate. To compute the MML estimate
of C, we need to compute the gradient matrix of I (μ,C, D) with respect to C and solving
∇C I = 0 gives the corresponding MML estimate.

∇C I = (N − 1)

2
C−1 − 1

2

N∑

i=1

C−1(xi − μ)(xi − μ)TC−1 and

ĈMML = 1

N − 1

N∑

i=1

(xi − μ̂)(xi − μ̂)T

We observe that the MML estimate ĈMML is equivalent to the unbiased estimate of the
covariance matrixC, thus, lending credibility for its preference over the traditional maximum
likelihood estimate.

4.2 MML-based parameter estimation of a von Mises-Fisher distribution

The MML parameter estimates of two dimensional vMF distributions have been derived
previously (Wallace and Dowe 1994; Dowe et al. 1996b). The MML estimation of three-
dimensional vMF was studied by Dowe et al. (1996c), where they demonstrate that the
MML-based inference is more reliable compared to the traditional ML and MAP based esti-
mation methods. We use the Wallace and Freeman (1987) method to formulate the objective
function (Eq. 11) and derive the MML parameter estimates corresponding to a generic vMF
distribution.
Prior probability of the parameters: Regarding the choice of a reasonable prior for the
parameters Θ = (μ, κ) of a vMF distribution, Wallace and Dowe (1994) and Dowe et al.
(1996c) suggest using the following “colourless” prior so that is uniform in direction and

normalizable on transforming into Cartesian coordinates in κ: h(μ, κ) ∝ κd−1

(1 + κ2)
d+1

2

.

Fisher information of the parameters: Dowe et al. (1996c) argue that in the general d-
dimensional case, the Fisher information |F (μ, κ)| = (NκAd(κ))d−1 × N A′

d(κ), where
Ad(κ) and A′

d(κ) are given by Eqs. 6 and 8 respectively.
Message length formulation: Substituting the expression for h(μ, κ), |F (μ, κ)|, and the
negative log-likelihood (Eq. 5) in Eq. 11 with the number of free parameters p = d , we get
the net message length expression as

I (μ, κ, D) = (d − 1)

2
log

Ad(κ)

κ
+ 1

2
log A′

d(κ) + (d + 1)

2
log(1 + κ2) − N logCd(κ)

−κμTR + constant

To obtain the MML estimates of μ and κ , I (μ, κ, D) needs to be minimized. The estimate
for μ is same as the maximum likelihood estimate (Eq. 6). The resultant equation in κ that
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needs to be minimized is then given by I (κ). To obtain the MML estimate of κ , we need to
differentiate Eq. 13 and set it to zero.

I (κ) = (d − 1)

2
log

Ad(κ)

κ
+ 1

2
log A′

d(κ) + (d + 1)

2
log(1 + κ2) − N logCd(κ)

− κR + constant (12)

Let G(κ) ≡ ∂ I

∂κ
= − (d − 1)

2κ
+ (d + 1)κ

1 + κ2 + (d − 1)

2

A′
d(κ)

Ad(κ)
+ 1

2

A′′
d(κ)

A′
d(κ)

+ N Ad(κ) − R

(13)

The non-linear equation: G(κ) = 0 does not have a closed form solution. We try both the
Newton and Halley’s method to find an approximate solution. We discuss both variants and
comment on the effects of the two approximations in the experimental results. To be fair and
consistent with Sra (2012) and Song et al. (2012), we use the initial guess of the root as κB
(Eq. 7) and iterate twice to obtain the MML estimate.

1. Approximation using Newton’s method:

κ1 = κB − G(κB)

G ′(κB)
and κMN = κ1 − G(κ1)

G ′(κ1)
(14)

2. Approximation using Halley’s method:

κ1 = κB − 2G(κB)G ′(κB)

2G ′(κB)2 − G(κB)G ′′(κB)
and κMH = κ1 − 2G(κ1)G ′(κ1)

2G ′(κ1)2 − G(κ1)G ′′(κ1)
(15)

Equations (14) and (15) give the MML estimates κMN and κMH using Newton’s and Hal-
ley’s methods respectively. The details of evaluating G ′(κ) and G ′′(κ) are discussed in the
“Appendix”.

5 Minimum message length approach to mixture modelling

Mixture modelling involves representing some observed data as a weighted sum of com-
ponent density functions. For some observed data D = {x1, . . . , xN }, the log-likelihood

using the mixture distribution is L (D|Φ) =
N∑

i=1

log
M∑

j=1

w j f j (xi ;Θ j ), where Φ =
{w1, . . . , wM ,Θ1, . . . , ΘM }, w j and f j (x;Θ j ) are the weight and probability density of
the j th component respectively. For a fixed M , the mixture parameters Φ are traditionally
estimated using a standardExpectation–Maximization (EM) algorithm (Dempster et al. 1977;
Krishnan and McLachlan 1997). This is briefly discussed below.

5.1 Standard EM algorithm to estimate mixture parameters

The standard EM algorithm is based on maximizing the log-likelihood function of the data,
L (D|Φ). The maximum likelihood estimates are then given as ΦML = arg max

Φ

L (D|Φ).

Because of the absence of a closed form solution for ΦML , a gradient descent method is
employed where the parameter estimates are iteratively updated until convergence to some
local optimum is achieved (Dempster et al. 1977; McLachlan and Basford 1988; Xu and
Jordan 1996; Krishnan and McLachlan 1997; McLachlan and Peel 2000). The EM method
consists of two steps:
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– Expectation-step: Each datum xi has fractional membership in each of the mixture com-
ponents. These partial memberships are defined using the responsibility matrix (Eq. 16),
where ri j denotes the conditional probability of a datum xi belonging to the j th com-
ponent. The effective membership associated with the j th component is then given by
n j .

ri j = w j f (xi ;Θ j )∑M
k=1 wk f (xi ;Θk)

, ∀ 1 ≤ i ≤ N , 1 ≤ j ≤ M and n j =
N∑

i=1

ri j (16)

– Maximization-step: Assuming Φ(t) be the estimates at some iteration t , the expectation
of the log-likelihood using Φ(t) and the partial memberships is then maximized which
is tantamount to computing Φ(t+1), the updated maximum likelihood estimates for the
next iteration (t + 1). The weights are updated as w

(t+1)
j = n(t)

j /N .

The above sequence of steps are repeated until a certain convergence criterion is satisfied. At
some intermediate iteration t , the mixture parameters are updated using the corresponding
ML estimates and are given below.

– Gaussian: The ML updates of the mean and covariance matrix are

μ̂
(t+1)
j = 1

n(t)
j

N∑

i=1

r (t)
i j xi and Ĉ(t+1)

j = 1

n(t)
j

N∑

i=1

r (t)
i j

(
xi − μ̂

(t+1)
j

) (
xi − μ̂

(t+1)
j

)T

– vonMises-Fisher:The resultant vector sum is updated asR(t+1)
j = ∑N

i=1 r
(t)
i j xi . If R(t+1)

j

represents the magnitude of vector R(t+1)
j , then the updated mean and concentration

parameter are

μ̂
(t+1)
j = R(t+1)

j

R(t+1)
j

, R̄(t+1)
j = R(t+1)

j

n(t)
j

, κ̂
(t+1)
j = A−1

d

(
R̄(t+1)
j

)

5.2 EM algorithm to estimate mixture parameters using MML

Encoding a mixture model using MML: We refer to the discussion in Wallace (2005) to
describe the intuition behind mixture modelling using MML. The framework requires the
encoding of (1) the model parameters, and (2) the data using those parameters. The statement
costs for encoding the mixture model and the data can be decomposed into:

1. Encoding the number of components M : In order to encode the message losslessly, it
is required to initially state the number of components. In the absence of background
knowledge, one would like to model the prior belief in such a way that the probability
decreases for greater number of components. If h(M) ∝ 2−M , then I (M) = M log 2 +
constant. Alternatively, one could assume a uniform prior over M within some range.
The chosen prior has little effect as its contribution is minimal when compared to the
magnitude of the total message length (Wallace 2005).

2. Encoding the weights w1, . . . , wM which are treated as parameters of a multino-
mial distribution with sample size n j , ∀1 ≤ j ≤ M . The length of encoding the
weights is then given by the expression given by Boulton and Wallace (1969) as

I (w) = (M − 1)

2
log N − 1

2

M∑

j=1

log w j − (M − 1)!
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3. Encoding each of the component parameters Θ j as given by I (Θ j ) = − log
h(Θ j )√|F (Θ j )|

(discussed in Sect. 3).
4. Encoding the data: each datum xi can be stated to a finite precision ε which is dictated

by the accuracy of measurement.1 The probability measure of a datum xi ∈ R
d is

then given as Pr(xi ) = εd Pr(xi ;M ) where Pr(xi ;M ) is the mixture density. Hence,
the total length of encoding the entire data D = {xi }, 1 ≤ i ≤ N is then given by

I (D|Φ) = −
N∑

i=1

log Pr(xi ) = −Nd log ε −
N∑

i=1

log
M∑

j=1

w j f j (xi ;Θ j )

Thus, the total message length of a M component mixture is given by Eq. 17. Note that the
constant term includes the lattice quantization constant (resulting from stating all the model
parameters) in a p-dimensional space, where p is equal to the number of free parameters in
the mixture model.

I (Φ, D) = I (M) + I (w) +
M∑

j=1

I (Θ j ) + I (D|Φ) + constant (17)

Estimating the mixture parameters: The parameters of the mixture model are those that
minimize Eq. 17. To achieve this, we use the standard EM algorithm (Sect. 5.1), where
the parameters are iteratively updated using their respective MML estimates. The compo-
nent weights are obtained by differentiating Eq. 17 with respect to w j under the constraint∑M

j=1 w j = 1 and are computed as:

w
(t+1)
j = n(t)

j + 1
2

N + M
2

(18)

The parameters of the j th component are updated using r (t)
i j and n(t)

j (Eq. 16), the partial
memberships assigned to the j th component at some intermediate iteration t and and are
given below.

– Gaussian: The MML updates of the mean and covariance matrix are

μ̂
(t+1)
j = 1

n(t)
j

N∑

i=1

r (t)
i j xi and Ĉ(t+1)

j = 1

n(t)
j − 1

N∑

i=1

r (t)
i j

(
xi −μ̂

(t+1)
j

) (
xi −μ̂

(t+1)
j

)T

(19)

– vonMises-Fisher:The resultant vector sum is updated asR(t+1)
j = ∑N

i=1 r
(t)
i j xi . If R(t+1)

j

represents the magnitude of vector R(t+1)
j , then the updated mean is given by Eq. 20. The

MML update of the concentration parameter κ̂
(t+1)
j is obtained by solving G(κ̂

(t+1)
j ) = 0

after substituting N → n(t)
j and R → R(t+1)

j in Eq. 12.

μ̂
(t+1)
j = R(t+1)

j /R(t+1)
j (20)

The EM terminates when the change in the total message length (improvement rate) between
successive iterations is less than some predefined threshold. The difference between the two

1 We note that ε is a constant value and has no effect on the overall inference process. It is used in order to
maintain the theoretical validity when making the distinction between probability and probability density.
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variants of standard EM discussed above is firstly the objective function that is being opti-
mized. In Sect. 5.1, the log-likelihood function is maximized which corresponds to I (D|Φ)

term in Sect. 5.2. Equation (17) includes additional terms that correspond to the cost associ-
ated with stating the mixture parameters. Secondly, in the M-step, in Sect. 5.1, the components
are updated using their ML estimates whereas in Sect. 5.2, the components are updated using
their MML estimates.
Issues arising from the use of EM: The standard EM algorithms outlined above can be used
only when the number of mixture components M is fixed or known a priori. Even when the
number of components are fixed, EM has potential pitfalls. The method is sensitive to the
initialization conditions. To overcome this, some reasonable start state for the EM may be
determined by initially clustering the data (Krishnan and McLachlan 1997; McLachlan and
Peel 2000). Another strategy is to run the EM a few times and choose the best amongst all the
trials. Figueiredo and Jain (2002) point out that, in the case of Gaussian mixture modelling,
EM can converge to the boundary of the parameter space when the corresponding covariance
matrix is nearly singular or when there are few initial members assigned to that component.

6 Existing methods of inferring the number of mixture components

Inferring the “right” number of mixture components for unlabelled data is a difficult problem
(McLachlan and Peel 2000). There have been numerous approaches proposed that attempt
to tackle this problem (Akaike 1974; Schwarz 1978; Rissanen 1978; Bozdogan 1993; Oliver
et al. 1996; Roberts et al. 1998; Biernacki et al. 2000; Figueiredo and Jain 2002). There
are infinitely many mixtures that one can use to model some given data. Any method that
aims to selectively determine the optimal number of components should factor the cost
associated with the mixture parameters. To this end, several methods based on information
theory have been proposed where there is some form of penalty associated with choosing a
certain parameter value (Wallace and Boulton 1968; Akaike 1974; Schwarz 1978; Wallace
and Freeman 1987; Rissanen 1989). We briefly review some of these methods and then
proceed to explain our proposed method.
AIC (Akaike 1974) & BIC (Schwarz 1978): AIC in the simplest form adds the number
of free parameters p to the negative log-likelihood expression. BIC, similar to AIC, adds
a constant penalty of (1/2) log N , for each free parameter in the model. Rissanen (1978)
formulated minimum description length (MDL) which formally coincides with BIC (Oliver
et al. 1996; Figueiredo and Jain 2002). The formulations of AIC and BIC/MDL suggest that
the parameter cost associated with adopting a model is dependent only on the number of free
parameters and not on the parameter values themselves. In other words, the criteria consider
all models of a particular type (of probability distribution) to have the same statement cost
associated with the parameters. For example, a generic d-dimensional Gaussian distribution
has p = d(d+3)/2 free parameters. All such distributions will have the same parameter costs
regardless of their characterizing means and covariance matrices. This is an oversimplifying
assumption that can hinder proper inference.

The criteria can be interpreted under the MML framework wherein the first part of the
message is a constant multiplied by the number of free parameters. AIC and BIC formulations
can be obtained as approximations to the two-part MML formulation defined by Eq. 11
(Figueiredo and Jain 2002). It has been argued that for tasks such as mixture modelling,
where the number of free parameters potentially grows in proportion to the data, MML is
known in theory to give consistent results as compared to AIC and BIC (Wallace 1986;
Wallace and Dowe 1999).
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MML Unsupervised (Oliver et al. 1996): A MML-based scoring function akin to the one
shown in Eq. 17 was used to model Gaussian mixtures. However, the authors only consider
the specific case of Gaussians with diagonal covariance matrices, and fail to provide a general
method dealing with full covariance matrices.
Approximate Bayesian (Roberts et al. 1998): The method, also referred to as Laplace-
empirical criterion (LEC) (McLachlan and Peel 2000), uses a scoring function derived using
Bayesian inference and serves to provide a tradeoff between model complexity and the qual-
ity of fit. Although the formulation is an improvement over Oliver et al. (1996), there are
some limitations due to the assumptions made while proposing the scoring function:

– While computing the prior density of the covariance matrix, the off-diagonal elements
are ignored.

– The computation of the determinant of the Fisher matrix is approximated by computing
the Hessain |H |. It is to be noted that while the Hessian is the observed information (data
dependent), the Fisher information is the expectation of the observed information. MML
formulation requires the use of the expected value.

– Further, the approximated Hessian was derived for Gaussians with diagonal covariances.
For Gaussians with full covariance matrices, the Hessian was approximated by replacing
the diagonal elements with the corresponding eigen values in the Hessian expression. The
empirical Fisher computed in this form does not guarantee the characteristic invariance
property of the classic MML method (Oliver and Baxter 1994).

Integrated complete likelihood (ICL) (Biernacki et al. 2000): The ICL criterion maximizes
the complete log-likelihood and has a BIC-like formulation. The scoring function penalizes
each free parameter by a constant value and does not account for the model parameters.
Search method to determine the optimal number of mixture components: Across the methods
that use these criteria (Akaike 1974; Schwarz 1978; Oliver et al. 1996; Roberts et al. 1998;
Biernacki et al. 2000), a rigorous treatment on the selection of number of mixture components
M is lacking. A rudimentary version used in conjunction with these criteria is to experiment
with different values of M and choose the one which results in the optimum value (least
AIC/BIC, minimum message length or minimum ICL value). For each M , the standard EM
algorithm is initialized a certain number of times and the trial resulting in the best EM
outcome is chosen.
Unsupervised learning of finite mixtures (Figueiredo and Jain 2002): The method uses the
MML criterion to formulate the scoring function given by Eq. 21, where Np is the number
of free parameters per component and w j is the component weight. The formulation can
be interpreted as a two-part message for encoding the model parameters and the observed
data. The scoring function is derived from Eq. 17 by assuming the prior density of the
component parameters to be a Jeffreys prior. If Θ j is the vector of parameters describing the
j th component, then the prior density h(Θ j ) ∝ √|F (Θ j )| (Jeffreys 1946). Similarly, a prior
for weights would result in h(w1, . . . , wM ) ∝ (w1 . . . wM )−1/2.

I (D,Φ) = Np

2

M∑

j=1

log

(
Nw j

12

)
+ M

2
log

N

12
+ M(Np + 1)

2
︸ ︷︷ ︸

first part

−L (D|Φ)︸ ︷︷ ︸
second part

(21)

We note that the scoring function is consistent with the MML encoding scheme. However, it
can be improved by amending the assumptions as detailed in Sect. 4. Further, the assumptions
have the following side effects:
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– The value of − log
h(Θ j )√|F (Θ j )|

gives the cost of encoding the component parameters. By

assuming h(Θ j ) ∝ √|F (Θ j )|, the message length associated with using any parameters
Θ j is essentially treated the same. To avoid this, the use of independent uniform priors
over non-informative Jeffreys’s priors was advocated previously (Oliver et al. 1996; Lee
1997; Roberts et al. 1998). The use of Jeffreys prior eliminates the need to compute
the Fisher. Consequently, the parameters are encoded to a constant precision which is a
simplifying assumption. Wallace (2005) state that “Jeffreys, while noting the interesting
properties of the prior formulation did not advocate its use as a genuine expression of
prior knowledge.” By making this assumption, Figueiredo and Jain (2002) “sidestep” the
difficulty associated with explicitly computing the Fisher information associated with the
component parameters. Hence, for encoding the parameters of the entire mixture, only
the cost associated with the component weights is considered.

– The code length to state each Θ j is, therefore, greatly simplified as (Np/2) log(Nw j )

(notice the sole dependence on weight w j ). Figueiredo and Jain (2002) interpret this as
being similar to a MDL formulation because Nw j gives the expected number of data
points generated by the j th component. This is equivalent to the BIC criterion discussed
earlier. We note that MDL/BIC are highly simplified versions of MML formulation and
therefore, Eq. 21 does not capture the entire essence of complexity and goodness of fit
accurately.

Searchmethod of Figueiredo and Jain (2002): The method begins by assuming a large number
of components and updates the weights iteratively as given by Eq. 22, where n j is the effective
membership of data points in the j th component. A component is annihilated when its weight
becomes zero and consequently the number of mixture components decreases. We note that
the search method of Figueiredo and Jain (2002) is an improvement over the methods they
compare against. However, we make the following remarks about their method.

w j = max
{
0, n j − Np/2

}
∑M

j=1 max
{
0, n j − Np/2

} (22)

– The method updates the weights as given by Eq. 22. During any iteration, if the amount
of data allocated to a component is less than Np/2, its weight is updated as zero and
is ignored in subsequently. This imposes a lower bound on the membership of each
component. As an example, for a Gaussian mixture in 10-dimensions, the number of
free parameters per component is Np = 65, and hence the lower bound is 33. Hence, in
this case, if a component has ∼30 data, the mixture size is reduced and these data are
assigned to some other component(s). Consider a scenario where there are 50 observed
10 dimensional data originally generated by a mixture with two components and equal
mixing proportions. The method would always infer a single component regardless of
the separation between the two components. This is clearly a wrong inference! (see Sect.
8.4 for the relevant experiments).

– Once a component is discarded, the mixture size decreases by one, and it cannot be recov-
ered. Because the memberships n j are updated iteratively using an EM algorithm and
because EM might not always lead to global optimum, it is conceivable that the updated
values need not always be optimal. This might lead to situations where a component is
deleted owing to its low prominence. There is no provision to increase the mixture size
in the subsequent stages of the algorithm to account for such behaviour.
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– The method assumes a large number of initial components in an attempt to be robust
with respect to EM initialization. However, this places a significant overhead on the
computation due to handling several components.

Summary: We observe that while all these methods (and many more) work well within their
defined scope, they are incomplete in achieving the true objective that is to rigorously score
models and their ability to fit the data. The methods discussed above can be seen as different
approximations to the MML framework. They adopted various simplifying assumptions and
approximations. To avoid such limitations, we developed a classic MML formulation, giving
the complete message length formulations for Gaussian and von Mises-Fisher distributions
in Sect. 4.

Secondly, in most of these methods, the search for an optimal number of mixture compo-
nents is achieved by selecting the mixture that results in the best EM outcome out of many
trials. This is not an elegant solution and Figueiredo and Jain (2002) proposed a search heuris-
tic which integrates estimation and model selection. A comparative study of these methods
is presented in McLachlan and Peel (2000). Their analysis suggested the superior perfor-
mance of ICL (Biernacki et al. 2000) and LEC (Roberts et al. 1998). Later, Figueiredo and
Jain (2002) demonstrated that their proposed method outperforms the contemporary methods
based on ICL and LEC and is regarded as the current state of the art. We, therefore, compare
our method against that of Figueiredo and Jain (2002) and demonstrate its effectiveness. With
this background, we formulate an alternate search heuristic to infer an optimal number of
mixture components which aims to address the above limitations.

7 Proposed approach to infer an optimal mixture

The space of candidate mixture models to explain any given data is infinitely large. As per the
MML criterion, the goal is to search for the mixture that has the least overall message length.
If the number of mixture components are fixed, then the EM algorithm in Sect. 5.2 can be
used to estimate the mixture parameters, namely the component weights and the parameters
of each component. However, here it is required to search for the optimal number of mixture
components along with the corresponding mixture parameters. Our proposed search heuristic
extends the MML-based Snob program (Wallace and Boulton 1968; Wallace 1986; Jorgensen
and McLachlan 2008) for unsupervised learning. We define three operations, namely split,
delete, and merge that can be applied to any component in the mixture.

7.1 The complete algorithm

The pseudocode of our search method is presented in Algorithm 1. The basic idea behind the
search strategy is to perturb a mixture from its current suboptimal state to obtain a new state
(if the perturbed mixture results in a smaller message length). In general, if a (current) mixture
has M components, it is perturbed using a series of Split, Delete, and Merge operations to
check for improvement. Each component is split and the new (M + 1)-component mixture
is re-estimated. If there is an improvement (i.e., if there is a decrease in message length with
respect to the current mixture), the new (M + 1)-component mixture is retained. There are
M splits possible and the one that results in the greatest improvement is recorded (see lines
5–7 in Algorithm 1). A component is first split into two sub-components (children) which
are locally optimized by the EM algorithm on the data that belongs to that sole component.
The child components are then integrated with the others and the mixture is then optimized
to generate a M +1 component mixture. The reason for this is, rather than use random initial
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Algorithm 1: Achieve an optimal mixture model

1 current ← one-component-mixture
2 while true do
3 components ← current mixture components
4 M ← number ofcomponents
5 for α ← 1 to M do /* exhaustively split all components */
6 spli ts[α] ← Split(current, components[α])
7 Best Spli t ← best (spli ts) /* remember the best split */
8 if M > 1 then
9 for α ← 1 to M do /* exhaustively delete all components */

10 deletes[α] ← Delete(current, components[α])
11 Best Delete ← best (deletes) /* remember the best deletion */
12 for α ← 1 to M do /* exhaustively merge all components */
13 β ← closest-component(α)

14 merges[α] ← Merge(current, α, β)

15 BestMerge ← best (merges) /* remember the best merge */
16 Best Perturbation ← best (Best Spli t, Best Delete, BestMerge) /* select the best

perturbation */
17 �I ← message_length(Best Perturbation) − message_length(current) /* check for

improvement */
18 if �I < 0 then
19 current ← Best Perturbation
20 continue
21 else
22 break
23 return current

values for the EM, it is better if we start from some already optimized state to reach to a
better state. Similarly, each of the components is then deleted, one after the other, and the
(M − 1)-component mixture is compared against the current mixture. There are M possible
deletions and the best amongst these is recorded (see lines 8–11 in Algorithm 1). Finally,
the components in the current mixture are merged with their closest matches (determined by
calculating the KL-divergence) and each of the resultant (M − 1)-component mixtures are
evaluated against the M component mixture. The best among these merged mixtures is then
retained (see lines 12–15 in Algorithm 1).

We start by assuming a one component mixture. This component is split into two children
that are locally optimized. If the split results in a better model, it is retained. For any M-
component mixture, there might be improvement due to splitting, deleting and/or merging its
components. We select the perturbation that best improves the current mixture. This process
is repeated until there is no further improvement possible. The notion of best or improved
mixture is based on the amount of reduction of message length that the perturbed mixture
provides. In the current state, the observed data have partial memberships in each of the M
components. Before the execution of each operation, these memberships need to be adjusted
and a EM is subsequently carried out to achieve an optimum with a different number of
components. We will now examine each operation in detail and see how the memberships
are affected after each operation.

7.2 Strategic operations employed to determine an optimal mixture model

Split operation (Line 6 in Algorithm 1): Let R = [ri j ] be the N × M responsibility
(membership) matrix and w j be the weight of j th component in mixture M . As an example,
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assume a component with index α ∈ {1, M} and weight wα in the current mixture M is split
to generate two child components. The goal is to find two distinct clusters amongst the data
associated with component α. It is to be noted that the data have fractional memberships
in component α. The EM is therefore, carried out within the component α assuming a two-
component sub-mixture with the data weighted as per their current memberships riα . The
remaining M − 1 components are untouched. An EM is carried out to optimize the two-
component sub-mixture. The initial state and the subsequent updates in the Maximization-step
are described below.
Parameter initialization of the two-component sub-mixture:The goal is to identify two distinct
clusters within the component α. For Gaussian mixtures, to provide a reasonable starting
point, we compute the direction of maximum variance of the parent component and locate two
points which are one standard deviation away on either side of its mean (along this direction).
These points serve as the initial means for the two children generated due to splitting the
parent component. Selecting the initial means in this manner ensures they are reasonably
apart from each other and serves as a good starting point for optimizing the two-component
sub-mixture. The memberships are initialized by allocating the data points to the closest of the
two means. Once the means and the memberships are initialized, the covariance matrices of
the two child components are computed. There are conceivably several variations to how the
two-component sub-mixture can be initialized. These include random initialization, selecting
two data points as the initial component means, and many others. However, the reason for
selecting the direction of maximum variance is to utilize the available characteristic of data,
i.e., the distribution within the component α. For von Mises-Fisher mixtures, the maximum
variance strategy (as for Gaussian mixtures) cannot be easily adopted, as the data is distributed
on the hypersphere. Hence, in this work, we randomly allocate data memberships and compute
the components’ (initial) parameters.

Once the parameters of the sub-mixture are initialized, an EM algorithm is carried out
(just for the sub-mixture) with the following Maximization-step updates. Let Rc = [rcik] be

the N × 2 responsibility matrix for the two-component sub-mixture. For k ∈ {1, 2}, let n(k)
α

be the effective memberships of data belonging to the two child components, let w
(k)
α be

the weights of the child components within the sub-mixture, and let Θ
(k)
α be their respective

parameters.

– The effective memberships are updated as n(k)
α = ∑N

i=1 r
c
ik and n(1)

α + n(2)
α = N .

– As the sub-mixture comprises of two child components, substitute M = 2 in Eq. 18 to
obtain the corresponding weight updates: w(k)

α = (n(k)
α + 1

2 )/(N+1) and w
(1)
α +w

(2)
α = 1.

– The component parameters Θ
(k)
α = (μ̂

(k)
α , Ĉ(k)

α ) for Gaussian mixtures are updated using

Eq. 19. For vMF mixtures, the component parameters Θ
(k)
α = (μ̂

(k)
α , κ̂

(k)
α ) are updated

using Eqs. 20 and 12. However, these updates are using the modified responsibility terms
r (k)
i = riαrcik . Since we are considering the sub-mixture, the original responsibility riα

is multiplied by the responsibility within the sub-mixture rcik to quantify the influence of
datum xi to each of the child components. After the sub-mixture is locally optimized, it is
integrated with the untouched M − 1 components of M to result in a M + 1 component
mixture M ′. An EM is finally carried out on the M + 1 components to estimate the
parameters of M ′ and result in an optimized (M + 1)-component mixture.

EMinitialization forM ′: Usually, the EM is started by a random initialization of the members.
However, because the two-component sub-mixture is now optimal and the M−1 components
in M are also in an optimal state, we exploit this situation to initialize the EM (for M ′) with a
reasonable starting point. As mentioned above, the component with index α with component
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weight wα is split. Upon integration, the (child) components that replaced component α will
now correspond to indices α and α + 1 in the new mixture M ′. Let R′ = [r ′

i j ] ∀1 ≤ i ≤
N , 1 ≤ j ≤ M + 1 be the responsibility matrix for the new mixture M ′ and let w′

j be the
component weights in M ′.

– Component weights: These are initialized as w′
j = w j if j < α and w′

j = w j−1 if

j > α + 1. Further, w′
α = wαw

(1)
α and w′

α+1 = wαw
(2)
α .

– Memberships: The responsibility matrix R′ is initialized for xi ∀1 ≤ i ≤ N as r ′
i j = ri j

if j < α and r ′
i j = ri j−1 if j > α + 1. Further, r ′

iα = riαrci1 and r ′
i α+1 = riαrci2. The

effective memberships in M ′ are n′
j = ∑N

i=1 r
′
i j ∀1 ≤ j ≤ M + 1.

With these starting points, the parameters of M ′ are estimated using the EM algorithm with
updates in the Maximization-step given by Eqs. 18, 19, and 20. The EM results in local
convergence of the (M + 1)-component mixture. If the message length of encoding data
using M ′ is lower than that due to M , that means the perturbation of M because of splitting
component α resulted in M ′ that compresses the data better, and hence, is a better mixture
model.
Delete operation (Line 10 in Algorithm 1): The goal here is to remove a component from
the current mixture and check whether it results in a better mixture model to explain the
observed data. Assume the component with index α and the corresponding weight wα is to
be deleted from M to generate a M − 1 component mixture M ′. Once deleted, the data
memberships of the component need to be redistributed between the remaining components.
The redistribution of data results in a good starting point to employ the EM algorithm to
estimate the parameters of M ′ as follows.
EM initialization for M ′: Let R′ = [r ′

i j ] be the N × (M − 1) responsibility matrix for the
new mixture M ′ and let w′

j be the weight of j th component in M ′.

– Component weights: The weights are initialized using w′
j = w j

1 − wα

if j < α and

w′
j = w j+1

1 − wα

if j ≥ α. It is to be noted that wα �= 1 because the MML update

expression in the M-step for the component weights always ensures non-zero weights
during every iteration of the EM algorithm (see Eq. 18).

– Memberships: The responsibility matrix R′ is initialized for xi ∀1 ≤ i ≤ N as r ′
i j =

ri j
1 − riα

if j < α and r ′
i j = ri ( j+1)

1 − riα
if j ≥ α. The effective memberships in M ′

are n′
j = ∑N

i=1 r
′
i j∀ 1 ≤ j ≤ M − 1. It is possible for a datum xi to have complete

membership in component α (i.e., riα = 1), in which case, its membership is equally
distributed among the other M−1 components (i.e., r ′

i j = 1/(M−1), ∀ j ∈ {1, M−1}).
With these readjusted weights and memberships, and the constituent M − 1 components, the
traditional EM algorithm is used to estimate the parameters of the new mixture M ′. If the
resultant message length of encoding data using M ′ is lower than that due to M , that means
the perturbation of M because of deleting component α resulted in a new mixture M ′ with
better explanatory power, which is an improvement over the current mixture.
Merge operation (Line 14 in Algorithm 1): The idea is to join a pair of components in M
and determine whether the resulting (M − 1)-component mixture M ′ is any better than
the current mixture M . One strategy to identify an improved mixture would be to consider
merging all possible pairs of components and choose the one which results in the greatest
improvement. This would, however, lead to a runtime complexity of O(M2), which could
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be significant for large values of M . Another strategy is to consider merging components
which are “close” to each other. For a given component, we identify its closest component
by computing the Kullback-Leibler (KL) distance with all others and selecting the one with
the least value. This would result in a linear runtime complexity of O(M) as computation of
KL-divergence is a constant time operation. For every component in M , its closest match
is identified and they are merged to obtain a M − 1 component mixture M ′. Merging the
pair involves reassigning the component weights and the memberships. An EM algorithm is
then employed to optimize M ′. Assume components with indices α and β are to be merged.
Let their weights be wα and wβ ; and their responsibility terms be riα and riβ, 1 ≤ i ≤ N
respectively. The component that is formed by merging the pair is determined first. It is then
integrated with the M − 2 remaining components of M to produce a (M − 1)-component
mixture M ′.
EM initialization for M ′: Let w(m) and r (m)

i be the weight and responsibility vector of

the merged component m respectively. They are given as: w(m) = wα + wβ and r (m)
i =

riα + riβ, 1 ≤ i ≤ N . The parameters of this merged component are estimated using
Eq. 19 (for Gaussian) and Eqs. 20 and 12 (for vMF). These updates are using the modified
responsibility terms r (m)

i . The merged component m with weight w(m), responsibility vector

r (m)
i , and parameters Θ(m) is then integrated with the M − 2 components. The merged

component and its associated memberships along with the M − 2 other components serve
as the starting point for optimizing the new mixture M ′. If M ′ results in a lower message
length compared to M , that means ths perturbation due to merging the pair resulted in an
improved mixture.

7.3 Illustrative example of our search procedure

We explain the proposed inference of mixture components through the following example that
was also considered by Figueiredo and Jain (2002). The bivariate Gaussian mixture shown in
Fig. 1 has three components with equal weights of 1/3 each and means at (−2,0), (0,0), and
(2,0). The covariance matrices of the components are the same and are equal to diag{2, 0.2}.
We simulate 900 data points from the mixture consistent with the work of Figueiredo and
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Fig. 1 Original mixture with three components and equal mixing proportions
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(a)P1: one-component (I = 22793 bits)
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(b) Red denotes the component being split.
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(c)P2: mixture post-EM (I = 22673 bits)
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(d) Initial means (black dots)
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(e) Optimized children (I = 22691 bits)
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(f)P3: mixture post-EM (I = 22460 bits)
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(g) Green ellipse is deleted
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(h) EM initialization (I = 25599 bits)
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(i) mixture post-EM (I = 22793 bits)
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(j) Blue ellipses are merged
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(k) EM initialization
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Fig. 2 a–c Splitting of the component in P1 results in an improved mixture P2. The dotted line is the direction
of maximum variance. d–l Second iteration (operations on the first component in P2): d–f Splitting results in
an improved mixture P3. g–iDeleting—no improvement. j–lMerging the two components—no improvement

Jain (2002) and employ the proposed search strategy. The progression of the search method
using various operations is detailed here.
Search for the optimal mixture model: The method begins by inferring a one-component
mixture P1 (see Fig. 2a). It then splits this component (as described in Split step of Sect. 7.2)
and checks whether there is an improvement in explanation. The red ellipse in Fig. 2b depicts
the component being split. The direction of maximum variance (dotted black line) is first
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identified, and the means (shown by black dots at the end of the dotted line) are initialized.
An EM algorithm is then used to optimize the two children and this results in a mixture P2

shown in Fig. 2c. Since the new mixture has a lower message length, the current is updated
as P2.

In the second iteration, each component in P2 is iteratively split, deleted, and merged.
Fig. 2d–f shows the splitting (red) of the first component. On splitting, the new mixture P3

results in a lower message length. Deletion of the first component is shown in Fig. 2g–i.
Before merging the first component, we identify its closest component (the one with the
least KL-divergence) (see Fig. 2j). Deletion and merging operations, in this case, do not
result in an improvement. These two operations have different intermediate EM initializa-
tions (Fig. 2h,k) but result in the same optimized one-component mixture. The same set of
operations are performed on the second component in P2. In this particular case, splitting
results in an improved mixture (same as P3). P3 is updated as the new parent and the series of
split, delete, and merge operations are carried out on all components in P3 (not shown here
pictorially). However, these perturbations do not produce improved mixtures in terms of the
total message length. Since the third iteration does not result in any further improvement, the
search terminates and P3 is considered as the best.

In different stages of the search method, we have different intermediate mixtures. EM
is a gradient descent technique and it can get trapped in a local optimum. By employing
the suggested search, we are exhaustively considering the possible options, and aiming to
reduce the possibility of the EM getting stuck in a local optimum. The proposed method
infers a mixture by balancing the tradeoff due to model complexity and the fit to the data.
This is particularly useful when there is no prior knowledge pertaining to the nature of the
data. In such a case, this method provides an objective way to infer a mixture with suitable
components that best explains the data through lossless compression.
Variation of the two-part message length: The search method infers three components and
terminates. In order to demonstrate that the inferred number of components is the optimum
number, we infer mixtures with increasing number of components (until it reaches M = 15
as an example) and plot their resultant message lengths. For each M > 3, the standard EM
algorithm (Sect. 5.2) is employed to infer the mixture parameters. Figure 3 shows the total
message lengths to which the EM algorithm converges for varying number of components
M . As expected, the total message length (green curve) drastically decreases initially until
M = 3 components are inferred. Starting from M = 4, the total message length gradually
increases, clearly suggesting that the inferred models are over-fitting the data with increasing
statement cost to encode the additional parameters of these (more complex) models. We
further elaborate on the reason for the initial decrease and subsequent increase in the total
message length. As per MML evaluation criterion, the message length comprises of two parts
– statement cost for the parameters and the cost for stating the data using those parameters. The
model complexity (which corresponds to the mixture parameters) increases with increasing
M . Therefore, the first part of the message to encode parameters increases with an increase
in the number of parameters. This behaviour is illustrated by the red curve in Fig. 3. The
first part message lengths are shown in red on the right side Y-axis in the figure. As the
mixture model becomes increasingly more complex, the error of fitting the data decreases.
This corresponds to the second part of the message in the MML encoding framework. This
behaviour is consistent with what is observed in Fig. 3 (blue curve). There is a sharp fall until
M = 3; then onwards increasing the model complexity does not lower the error significantly.
The error saturates and there is minimal gain with regards to encoding the data (the case of
overfitting). However, the model complexity dominates after M = 3. The optimal balance is
achieved when M = 3. In summary, the message length at M = 3 components was rightly
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Fig. 3 Variation of the individual parts of the total message length with increasing number of components
(note the two Y-axis have different scales—the first part follows the right side Y-axis; the second part and total
message lengths follow the left side Y-axis)

observed to be the optimum for this example. We note that for a fixed number of mixture
components, the EM algorithm for the MML metric is monotonically decreasing. However,
while searching for the number of components, MML continues to decrease until some
optimum is found and then steadily increases as illustrated through this example. Another
example is discussed in Kasarapu and Allison (2015) (which is an extended version of this
paper 2) where the evolution of the inferred mixture is explored in the case of a mixture with
overlapping components.

8 Experiments with Gaussian mixtures

We compare our proposed inference methodology against the widely cited method of
Figueiredo and Jain (2002). The authors tested the performance of their method against
that of Bayesian Information Criterion (BIC), Integrated Complete Likelihood (ICL), and
approximate Bayesian (LEC) methods (discussed in Sect. 6). It was shown that the method
of FJ3 was superior than BIC, ICL and LEC (using Gaussian mixtures). In this section, we
demonstrate through a series of experiments that our approach to infer mixtures fares better
when compared to that of FJ. The experimental setup is as follows: we use a Gaussian mixture
M t (true distribution), generate a random sample from it, and infer the mixture using the
data. This is repeated 50 times and we compare the performance of our method against that
of FJ. As part of our analysis, we compare the number of inferred components as well as the
quality of inferred mixtures.

2 The extended version is available at http://arxiv.org/abs/1502.07813.
3 From here on, we will use the short form FJ to refer to Figueiredo and Jain (2002).
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8.1 Methodologies used to compare the mixtures inferred by our proposed
approach and FJ’s method

Comparing message lengths: The MML framework allows us to objectively compare com-
peting mixture models by computing the total message length used to encode the data. The
difference in message lengths gives the log-odds posterior ratio of any two mixtures (Eq.
10). Given some observed data, and any two mixtures, one can determine which of the two
best explains the data. Our search methodology uses the scoring function (IMML ) defined in
Eq. 17. As elaborated in Sect. 6, FJ use an approximated MML-like scoring function (IF J )
given by Eq. 21.

We employ our search method and FJ’s method to infer the mixtures using the same data;
let these inferred mixtures be M ∗ and M F J respectively. We compute two quantities:

�IMML = IMML (M F J ) − IMML (M ∗) and �IF J = IF J (M
F J ) − IF J (M

∗) (23)

We use the two different scoring functions to compute the differences in message lengths of
the resulting mixtures M F J and M ∗. Since the search method used to obtain M ∗ optimizes
the scoring function IMML , it is expected that IMML(M ∗) < IMML (M F J ) and consequently
�IMML > 0. This implies that our method is performing better using our defined objective
function. However, if IF J (M

∗) < IF J (M
F J ), this indicates that our inferred mixture M ∗

results in a lower value of the scoring function that is defined by FJ. Such an evaluation not
only demonstrates the superior performance of our search (leading to M ∗) using our defined
scoring function but also proves it is better using the scoring function as defined by FJ.
Kullback Leibler (KL) divergence: In addition to using message length based evaluation cri-
terion, we also compare the mixtures using KL-divergence (Kullback and Leibler 1951). The
metric gives a measure of the similarity between two distributions (the lower the value, the
more similar the distributions). For a mixture probability distribution, there is no analytical
form to compute the metric. However, one can calculate its empirical value (which asymp-
totically converges to the KL-divergence). In experiments relating to mixture simulations,
we know the true mixture M t from which the data {xi }, 1 ≤ i ≤ N is being sampled. The
KL-divergence is given by the following expression:

DKL(M t ||M ) = EM t

[
log

Pr(x,M t )

Pr(x,M )

]
≈ 1

N

N∑

i=1

log
Pr(xi ,M t )

Pr(xi ,M )
(24)

where M is an inferred mixture distribution (M ∗ or M F J ) whose closeness to the true
mixture M t is to be determined.

8.2 Bivariate mixture simulation

An experiment conducted by FJ was to randomly generate N = 800 data points from a
two-component (with equal mixing proportions) bivariate mixture M t whose means are at
μ1 = (0, 0)T and μ2 = (δ, 0)T , have equal covariance matrices: C1 = C2 = I (the identity
matrix), and compare the number of inferred components. We repeat the same experiment
here and compare with the results of FJ. The separation δ between the means is gradually
increased and the percentage of the correct selections (over 50 simulations) as determined
by the two search methods is analyzed. As expected, an increase in the separation between
the component means leads to an increase in the number of correctly inferred components
increases. For the mixtures inferred using both the approaches, the differences in message
lengths �IMML and �IF J are close to zero. The KL-divergences for the inferred mixtures
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Fig. 4 Bivariate mixture simulation (N = 100 and over 50 simulations). a Box-whisker plot showing the
variability in the number of inferred components. b Difference in message lengths computed using the two
different scoring functions (see Eq. 23). c KL-divergence of inferred mixtures when δ = 2.0. d KL-divergence
for all values of δ ∈ {1.8, . . . , 2.6}

are also the same. Therefore, for this experimental setup, the performance of both the methods
is roughly similar.

As the difference between the two search methods is not apparent from this experiment,
we wanted to investigate the behaviour of the methods with smaller samples. We repeated
the experiment with N = 100. In this case, our search method results in a mean value (of the
inferred components) close to 1 for different values of δ (see Fig. 4a). The average value of the
number of inferred components using FJ’s method fluctuates between 2 and 3. However, there
is significant variance in the number of inferred components as can be seen in Fig. 4a. There
are many instances where the number of inferred components is more than 3. The results
indicate that the FJ’s method is overfitting the data. Further, we evaluate the correctness of
the mixtures inferred by the two search methods by comparisons using the message length
formulations and KL-divergence. Figure 4b shows the boxplot of the difference in message
lengths of the mixtures M ∗ inferred using our proposed search method and the mixtures
M F J inferred using FJ’s method. We observe that �IMML > 0 across all values of δ for the
50 simulations. As per Eq. 23, we have IMML (M ∗) < IMML (M F J ). This implies that M ∗
has a lower message length compared to M F J when evaluated using our scoring function.
Similarly, we have �IF J < 0, i.e., IF J (M

∗) > IF J (M
F J ). This implies that M F J has a

lower message length compared to M ∗ when evaluated using FJ’s scoring function. These
results are not surprising as M ∗ and M F J are obtained using the search methods which
optimize the respective MML and MML-like scoring functions.
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We then analyzed the KL-divergence of M ∗ and M F J with respect to the true bivariate
mixture M t over all 50 simulations and across all values of δ. Ideally, the KL-divergence
should be close to zero. Figure 4c shows the KL-divergence of the mixtures inferred using the
two search methods with respect to M t when the separation is δ = 2.0. The proposed search
method infers mixtures whose KL-divergence (denoted by red lines) is close to zero, and
more importantly less than the KL-divergence of mixtures inferred by FJ’s search method
of (denoted by blue lines). The same type of behaviour is noticed with other values of δ.
Figure 4d compares the KL-divergence for varying values of δ. The median value of the
KL-divergence due to the proposed search method is close to zero with not much variation.
FJ’s search method always result in mixtures whose KL-divergence is higher than that of
ours. The results suggest that, in this case, mixtures M F J inferred by employing the FJ’s
search method deviate significantly from the true mixture distribution M t . This can also be
explained by the fact that there is a wide spectrum of the number of inferred components
(see Fig. 4a). This suggests that the MML-like scoring function is failing in its objective
to control the tradeoff between complexity and quality of fit, and hence, is selecting more
complex mixture models than necessary to describe the data.

8.3 Simulation of 10-dimensional mixtures

Along the same lines as the previous setup, FJ conducted another experiment for a 10-
variate two-component mixture M t with equal mixing proportions. The means are at μ1 =
(0, . . . , 0)T and μ2 = (δ, . . . , δ)T so that the Euclidean distance between them is δ

√
10. The

covariances of the two components are C1 = C2 = I. Random samples of size N = 800
were generated from the mixture and the number of inferred components are plotted. The
experiment is repeated for different values of δ and over 50 simulations. Figure 5a shows
the number of inferred components using the two search methods. At lower values of δ, the
components are close to each other, and hence, it is relatively more difficult to correctly infer
the true number of components. We observe that our proposed method performs clearly better
than that of Figueiredo and Jain (2002) across all values of δ. We also compared the quality of
these inferred mixtures by calculating the difference in message lengths using the two scoring
functions and the KL-divergence with respect to M t . For all values of δ, �IMML > 0, i.e.,
our inferred mixtures M ∗ have a lower message length compared to M F J when evaluated
using our scoring function. More interestingly, we also note that �IF J > 0 (see Fig. 5c).
This reflects that M ∗ have a lower message length compared to M F J when evaluated using
the scoring function of Figueiredo and Jain (2002). This suggests that their search method
results in a sub-optimal mixture M F J and fails to infer the better mixture M ∗.

In addition to the message lengths, we analyze the mixtures using KL-divergence. Similar
to the bivariate example in Fig. 4c, the KL-divergence of our inferred mixtures M ∗ is lower
than M F J , the mixtures inferred by Figueiredo and Jain (2002). Figure 5d shows the boxplot
of KL-divergence of the inferred mixtures M ∗ and M F J . At higher values of δ >= 1.45,
the median value of KL-divergence is close to zero, as the number of correctly inferred
components (Fig. 5a) is more than 90 %. However, our method always infers mixtures M ∗
with lower KL-divergence compared to M F J . These experimental results demonstrate the
superior performance of our proposed search method. Another experiment was carried out
where δ = 1.20 was held constant (i.e., extremely close components), gradually increased
the sample size N , and plotted the average number of inferred components by running 50
simulations for each N . Figure 5b shows the results for the average number of inferred
components as the amount of data increases. Our search method, on average, infers the true
mixture when the sample size is ∼1000. However, FJ’s search method requires larger amounts

123



Mach Learn (2015) 100:333–378 359

 0

 20

 40

 60

 80

 100

 1.05  1.1  1.15  1.2  1.25  1.3  1.35  1.4  1.45  1.5  1.55  1.6

C
or

re
ct

 s
el

ec
tio

ns
 (

%
)

Separation δ

Proposed
FJ

(a)

 1

 1.2

 1.4

 1.6

 1.8

 2

 600  800  1000  1200  1400  1600  1800  2000A
ve

ra
ge

 n
um

be
r 

of
 in

fe
rr

ed
 c

om
po

ne
nt

s

Number of data points

Proposed
FJ

(b)

 0

 50

 100

 150

 200

 250

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60

D
if

fe
re

nc
e 

in
 m

es
sa
ge

 le
ng

th
s

Separation δ

Proposed (ΔIMML)
MML-like (ΔIFJ) 

(c)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60

E
m

pi
ri

ca
l K

L
-d

iv
er
ge

nc
e

Separation δ

Proposed
FJ

(d)

Fig. 5 10-dimensional mixture simulations. a Percentage of correct selections with varying δ for a fixed
sample size of N = 800. b Average number of inferred mixture components with different sample sizes and
δ = 1.20 between component means. c Difference in message lengths of inferred mixtures. d Box-whisker
plot of KL-divergence of inferred mixtures

of data; even with a sample size of 2000, the average number of inferred components is ∼1.9.
In Fig. 5b, the red curve reaches the true number of 2 and saturates more rapidly than the
blue curve.

8.4 The impact of weight updates as formulated by Figueiredo and Jain (2002)

One of the drawbacks associated with FJ’s search method is due to the form of the updating
expression for the component weights (Eq. 22). As discussed in Sect. 6, a particular instance
of wrong inference is bound to happen when the net membership of a (valid) component is
less than Np/2, where Np is the number of free parameters per component. In such a case,
the component weight is updated as zero, and is eliminated, effectively reducing the mixture
size by one.

We conducted the following experiment to demonstrate this behaviour: we considered
the two-component 10-variate mixture M t as before and randomly generate samples of
size 50 from the mixture. Since the constituent components of M t have equal weights, on
average, each component has a membership of 25. We used δ = {10, 100, 1000}, so that
the two components are well apart from each other. For each δ, we run 50 simulations and
analyze the number of inferred components. As expected, FJ’s search method always infers
a mixture with one component regardless of the separation δ. In contrast, our method always
infers the correct number of components. In order to test the validity of mixtures inferred by
our proposed method, we analyze the resultant mixtures as discussed in Sect. 8.1.
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Fig. 6 Evaluation of the quality of inferred mixtures by comparing the difference in message lengths as
computed using the two scoring functions. Positive difference indicates that the mixtures inferred by our
search method have lower message lengths (see Eq. 23)

Figure 6a shows the difference in message lengths �IMML given in Eq. 23. We observe that
�IMML > 0 for all δ. This demonstrates that our inferred mixtures M ∗ have lower message
lengths compared to mixtures M F J using our scoring function. The same phenomenon is
observed when using FJ’s MML-like scoring function. In Fig. 6b, we observe that �IF J >

0, which means our search based mixtures M ∗ have lower message lengths compared to
mixtures M F J when evaluated using their scoring function. This demonstrates that M ∗ is
a better mixture as compared to M F J and their search method is unable to infer it. We also
note that the differences in message lengths increases with increasing δ. This is because for
the one-component inferred mixtureM F J , the second part of the message (see Eq. 21) which
corresponds to the negative log-likelihood term increases because of poorer fit to the data.
The two modes in the data become increasingly pronounced as the separation between the
components in the true mixture increases, and hence, modelling such a distribution using
a one-component mixture results in a poorer fit. This is clearly an incorrect inference. We
further strengthen our case by comparing the KL-divergence of the inferred mixturesM ∗ and
M F J with respect to M t . Figure 7 illustrates the results. As δ increases, the blue coloured
plots shift higher. These correspond to mixtures M F J inferred by FJ’s method. Our search
method, however, infers mixtures M ∗ which have lower KL-divergence. The figure indicates
that the inferred mixturesM ∗ are more similar to the true distribution as compared to mixtures
M F J .

8.5 Analysis of the computational cost

At any intermediate stage of the search procedure, a current mixture with M components
requires M number of split, delete, and merge operations before it is updated. Each of the
perturbations involve performing an EM to optimize the corresponding mixture parameters.
To determine the convergence of EM, we used a threshold of 10−5 which was the same
as used by FJ in their experiments. FJ’s method also requires to start from an initial large
number of components. We used 25 as an initial number based on what was suggested in
FJ. We investigate the number of times the EM routine is called and compare it with that
of FJ’s results. We examine with respect to the simulations that were carried out previously.
For the bivariate mixture discussed in Sect. 8.2, the number of resulting EM iterations when
the sample sizes are N = 800 and N = 100 are compared in Fig. 8a, b respectively. As
per the discussion in Sect. 8.2, at N = 800, the average number of components inferred
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Fig. 7 Box-whisker plot of KL-divergence of mixtures inferred by the two search methods. A random sample
of size N = 50 is generated for each δ and this is repeated 50 times
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Fig. 8 Number of EM iterations performed during the mixture simulations discussed in Sects. 8.2 and 8.3

by the two methods are about the same. However, the number of EM iterations required
by FJ’s method is greater than 200 across all values of δ (see Fig. 8a). In contrast, the
proposed method, on average, requires fewer than 50 iterations. In this case, both methods
infer similar mixtures with FJ’s method requiring more number of EM iterations. When the
bivariate mixture simulation is carried out using N = 100, the number of EM iterations
required by FJ’s method, on average, is greater than 100, while the proposed method requires
fewer than 40 iterations (see Fig. 8b). In this case, the proposed method not only infers better
mixtures (as discussed in Sect. 8.2) but is also conservative with respect to the computational
cost.

For the simulation results corresponding to the 10-variate mixtures (Sect. 8.3), the pro-
posed method requires close to 50 iterations on average, while FJ’s method requires about
20 (see Fig. 8c). However, the mixtures inferred by our method fare better when compared
to that of FJ (see Fig. 5). Furthermore, for the simulation results (see Sect. 8.4), FJ’s method
stops after 3 EM iterations. This is because their program does not accommodate compo-
nents when the memberships are less than Np/2. Our method requires 18 EM iterations on
average and infers the correct mixture components. In these two cases, our method infers
better quality mixtures, with no significant computational overhead.

These experiments demonstrate the ability of our search method to perform better than
the widely used FJ’s method. We compared the resulting mixtures using our proposed MML
formulation and FJ’s MML-like formulation, showing the advantages of the former over the
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latter. We also used a neutral metric, KL-divergence, to establish the similarity of our inferred
mixtures to the true distributions. The reader is directed to Kasarapu and Allison (2015) for
analysis on the Acidity (Richardson and Green 1997; McLachlan and Peel 1997) and Iris
(Anderson 1935; Fisher 1936) datasets.

9 Experiments with von Mises-Fisher distributions

We compare our MML-based parameter inference with the current state of the art vMF
estimators (discussed in Sect. 2.2). Tests include the analysis of the MML estimates of
the concentration parameter: κMN is the approximation of MML estimate using Newton’s
method and κMH is the approximation using Halley’s method (see Eqs. 14 and 15) against the
traditionally used approximations. Estimation of the vMF mean direction is the same across
all these methods. Estimation of κ , however, differs and hence, the corresponding results
are presented. Through these experiments, we demonstrate that the MML estimates perform
better than its competitors. These are followed by experiments demonstrating how these
estimates aid in the inference of vMF mixtures. These experiments illustrate the application
of the proposed search method to infer vMF mixtures using empirical studies and on real
world datasets.
MML-based parameter estimation for a vMF distribution: For different values of dimen-
sionality d and concentration parameter κ , data of sample size N are randomly generated
from a vMF distribution using the algorithm proposed by Wood (1994). The parameters
of a vMF distribution are estimated using the previously mentioned approximations. Let
κ̂ = {κT , κN , κH , κMN , κMH } denote the estimate of κ due to the respective methods.
Errors in κ estimation: We first report the errors in κ estimation by calculating the absolute
error |κ̂−κ| and the squared error (κ̂−κ)2 averaged over 1000 simulations. The relative error
|κ̂−κ|

κ
can be used to measure the percentage error in κ estimation. The following observations

are made based on the results shown in Table 1a.

– For N = 10, d = 10, κ = 10, the average relative error of κT , κN , κH is ∼25 %; for
κMN , κMH , it is ∼20 %. When N is increased to 100, the average relative error of κT
is 5.09 %, κN , κH is 5.05 %, and κMN , κMH is 4.9 %. We note that increasing N while
holding d and κ reduces the error rate across all estimation methods and for all tested
combinations of d, κ . This is expected because as more data becomes available, the
inference becomes more accurate. The plots shown in Fig. 9 reflect this behaviour. The
mean error at lower values of N = 5, 10, 20, 30 is noticeable. However, as N is increased
to 1000, there is a drastic drop in the error. We note that this behaviour is consistent across
all the different estimation methods.

– For fixed N and d , increasing κ increases the mean absolute error. However, the average
relative error decreases. As an example, for N = 100, d = 100, κ = 10, the average rel-
ative error of κT , κN , κH is ∼42 %; for κMN , κMH , it is 36.7 and 34 % respectively. When
κ is increased to 100, the error rate for κT , κN , κH drops to 2.18 % and for κMN , κMH , it
drops to 1.68 %. Further increasing κ by an order of magnitude to 1000 results in average
relative errors of 1.4 % for κT , κN , κH and 1.1 % for κMN , κMH . This indicates that as
the data becomes more concentrated, the errors in parameter estimation decrease.

– There is no clear pattern of the variation in error rates that can be observed when d is
changed keeping N and κ fixed. However, in any case, MML-based approximations have
the least mean absolute and mean squared error.
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Fig. 9 Box-whisker plots illustrating the κ estimates as the sample size is gradually increased. True distribution
is a 10-dimensional vMF with κ = 10. The plots are also indicative of the bias due to the estimates

Bias of the parameter estimates: The maximum likelihood estimate of κ is known to have
significant bias (Schou 1978; Best and Fisher 1981; Cordeiro and Vasconcellos 1999). The
mean absolute error can be used to quantitatively determine the bias due to the estimates.
Since the absolute error for the MML estimates is lower compared to the others (see Table 1a),
we conclude that the bias due to the MML estimates is lower. Further, the plots in Fig. 9 are
also indicative of the deviation between the average κ estimate and the true κ value. Also,
the mean squared error can be used to determine the combined effect of bias and variance
of the estimators. The mean squared error is empirically demonstrated to be the least for the
MML estimates.
KL-divergence and message lengths of the estimates: The quality of parameter inference
is further determined by computing the KL-divergence and the message lengths associated
with the κ estimates. The analytical expression to calculate the KL-divergence of any two
vMF distributions is derived in the “Appendix”. The KL-divergence is computed between the
estimated parameters and the true vMF parameters. The minimum message length expression
for encoding data using a vMF distribution is previously derived in Eq. 13. Table 1b lists
the average values of both the metrics. The MML estimates of κ result in the least value of
KL-divergence across all combinations of N , d, κ . Also, the message lengths associated with
the MML based estimates are the least. From Table 1b, we notice that when N = 10, κMN

and κMH clearly have lower message lengths. For N = 10, d = 10, κ = 10, κMN , κMH

result in extra compression of ∼1.5 bits over κT , κN , κH , which makes the MML estimates
21.5 times more likely than the others (as per Eq. 10).
Statistical hypothesis testing: There have been several goodness-of-fit methods proposed
in the literature to test the null hypothesis of a vMF distribution against some alternative
hypothesis (Kent 1982; Mardia et al. 1984; Mardia and Jupp 2000). Here, we examine the
behaviour of κ estimates for generic vMF distributions as proposed by Mardia et al. (1984).
They derived a likelihood ratio test for the null hypothesis of a vMF distribution (H0) against
the alternative of a Fisher-Bingham distribution (Ha). The asymptotically equivalent Rao’s
score statistic was used to test the hypothesis.
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The score statistic W , in this case, is a function of the concentration parameter. It has an
asymptotic χ2(p) distribution (with degrees of freedom p = d(d + 1)/2 − 1) under H0 as
the sample size N → ∞. For d = {10, 100, 1000}, the critical values at 5% significance
level are given in Table 2. If the computed test statistic exceeds the critical value, then the
null hypothesis of a vMF distribution is rejected. We conduct a simulation study where
we generate random samples of size N = 1 million from a vMF distribution with known
mean and κ = {10, 100, 1000}. For each inferred estimate κ̂ , we compute the test statistic and
compare it with the corresponding critical value. The results are shown in Table 2. For d = 10,
the approximation κT has a significant effect as its test statistic exceeds the critical value and
consequently the p-value is close to zero. This implies that the null hypothesis of a vMF
distribution is rejected by using the estimate κT . However, this is incorrect as the data was
generated from a vMF distribution. The p-values due to the estimates κN , κH , κMN , κMH

are all greater than 0.05 (the significance level) which implies that the null hypothesis is
accepted. For d = {100, 1000}, the p-values corresponding to the different estimates are
greater than 0.05. In these cases, the use of all the estimates lead to the same conclusion of
accepting the null hypothesis of a vMF distribution. As the amount of data increases, the
error due to all the estimates decreases. This is further exemplified below.
Asymptotic behaviour of MML estimates: Based on the empirical tests, we have so far seen
that MML estimates fare better when compared to the other approximations. We now discuss
the behaviour of the MML estimates in the limiting case. For large sample sizes, we plot the
errors in κ estimation. Song et al. (2012) demonstrated that their approximation results in the
least error in the limiting case. We compute the variation in error when d = 1000 and under
two scenarios:

1. Increasing κ: Figure 10a illustrates the behaviour of the absolute error with increasing κ .
The first observation is that irrespective of the estimation procedure, the error continues
to increase with increasing κ values (which corroborates our observations in the empirical
tests) and then saturates. According to Song et al. (2012), their estimate κH produces the
lowest error which we can see in the figure. Further, our MML Newton approximation
κMN actually performs worse than Song’s approximation κH . However, we note that the
errors due to MML Halley’s approximation κMH are identical to those produced by κH .
This suggests that asymptotically, the approximations achieved by κH and κMH are more
accurate (note that the errors in the limiting case are extremely low).

2. Increasing R̄: The maximum likelihood estimate of κ aims to achieve F(κ̂) ≡ Ad(κ̂) −
R̄ = 0 (Eq. 6). Hence, log |Ad(κ) − R̄| gives a measure of the error corresponding to
an estimate of κ . Figure 10b depicts the variation of this error with increasing R̄ . We
observe that κH and κMH produce the least error. We also note that the error produced
due to κMN is greater than that produced by κMH . However, we highlight the fact that
MML-based parameter inference aims to achieve G(κ̂) ≡ 0 (Eq. 12), a fundamentally
different objective function compared to the maximum likelihood based one.

The asymptotic results are shown here by assuming a value of N = 10200 (note the corre-
sponding extremely low error rates). In the limiting case, the MML estimate κMH coincides
with the ML estimate κH . However, κH ’s performance is better compared to the MML
Newton’s approximation κMN . The same behaviour is observed for when κ is fixed and the
dimensionality is increased. For enormous amount of data, the ML approximations converge
to the MML ones.
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Fig. 10 Errors in κ estimation for d = 1000 as the sample size N → ∞

10 Applications of vMF mixtures

10.1 Application to text clustering

We conducted empirical studies where the proposed search method is employed to infer vMF
mixtures with varying amounts of data and using true vMF mixtures of varying difficulty
levels. For these results, see the extended version (Kasarapu and Allison 2015). In this section,
we focus on the applications of vMF mixtures. The use of vMF mixtures in modelling
high dimensional text data has been investigated by Banerjee et al. (2005). To compute the
similarity between text documents requires their representation in some vector form. The
elements of the vectors are typically a function of the word and document frequencies in a
given collection. These vector representations are commonly used in clustering textual data
with cosine based similarity metrics being central to such analyses (Strehl et al. 2000). There
is a strong argument for transforming the vectors into points on a unit hypersphere (Salton
and McGill 1986; Salton and Buckley 1988). Such a normalized representation of text data
(which compensates for different document lengths) motivates their modelling using vMF
mixture distributions.

Banerjee et al. (2005) used their proposed approximation (see Eq. 7) to estimate the
parameters of a mixture with known number of components. They did not, however, propose
a method to search for the optimal number of mixture components. We not only derived
MML estimates which fare better compared to the previous approximations but also apply
them to devise a search method to infer the optimal mixtures. Ideally, the search is continued
until there is no further improvement in the message length (see Algorithm 1). For practical
purposes, the search is terminated when the improvement due to the intermediate split, delete
and merge operations during the search process is less than 0.01 %. Our proposed method to
infer mixtures was employed on the datasets that were used in the analysis by Banerjee et al.
(2005). The parameters of the intermediate mixtures are estimated using the MML Halley’s
estimates (Eq. 15) for the component vMF distributions. Banerjee et al. (2005) use mutual
information (MI) to assess the quality of clustering. For given cluster assignments X and

the (known) class labels Y , MI is defined as: E

[
log

Pr(X, Y )

Pr(X) Pr(Y )

]
. Along with the message

lengths, we use MI as one other evaluation criterion in our analysis. We also compute the
average F-measure when the number of clusters is same as the number of actual classes.

For each of the datasets, in the preprocessing step, we generate feature vectors using
the most frequently occuring words and generating a TF-IDF score for each feature (word)
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Table 3 Confusion matrix for 16-component assignment (using MML Halley estimate of κ)

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

cisi 0 0 4 0 288 133 28 555 197 255 0 0 0 0 0 0

cran 0 0 0 0 2 0 362 1 0 0 58 144 135 175 223 298

med 9 249 376 138 2 0 9 0 0 0 0 0 0 0 0 0

based on Okapi BM25 score (Robertson and Zaragoza 2009). These feature vectors are then
normalized to generate unit vectors in some d-dimensional space. Using this as directional
data on a hypersphere, a suitable mixture model was inferred using the greedy search proposed
in Sect. 7.
Classic3 dataset:4 The documents are from three categories: 1398 Cranfield (aeronauti-
cal related), 1033 Medline (medical journals) and 1460 Cisi (information retrieval related)
documents. The processed data has d = 4358 features.
Optimal number of clusters: In this example, it is known that there are three distinct categories.
However, this information is not usually known in real world setting (and we do not know
if they are from three vMF distributions). Assuming no knowledge of the nature of the data,
the search method infers a mixture with 16 components. The corresponding assignments are
shown in Table 3. A closer look at the generated assignments illustrate that each category
of documents is represented by more than one component. The three categories are split
to possibly represent specialized sub-categories. The Cisi category is distributed among 6
main components (M4–M9). The Cranfield documents are distributed among M6, M10–M15
components and the Medline category is split into M0–M3, and M6 components. We observe
that all but three components are non-overlapping; only M6 has representative documents
from all three categories.

The 16-component mixture inferred by the search method is a finer segregation of the
data when compared to modelling using a 3-component mixture. The parameters of the 3-
component mixture are estimated using EM algorithm (Sects. 5.1,5.2) where the components
are updated using the respective estimates. The 3-component mixtures inferred using the
different estimates perform comparably with each other; there is not much difference in the
assignments of data to the individual mixture components. The collection is comprised of
documents that belong to dissimilar categories and hence, the clusters obtained are wide
apart. This can be seen from the extremely high F-measure scores (Table 4a). For the 3-
component mixture, all the five different estimates result in high F-measure values with
Song being the best with an average F-measure of 0.978 and a MI of 0.982. MML (Halley’s)
estimate are close with an average F-measure of 0.976 and a MI of 0.976. However, based
on the message length criterion, the MML estimate results in the least message length (∼190
bits less than Song’s). The mutual information score using MML estimate is 1.04 (for 16
components) compared to 0.976 for 3 components. Also, the message length is lower for the
16 component case. However, Song’s estimator results in a MI score of 1.043, very close to
the score of 1.040 obtained using MML estimates.

For the Classic3 dataset, Banerjee et al. (2005) analyzed mixtures with greater numbers of
components than the “natural” number of clusters. They report that a 3-component mixture
is not necessarily a good model and more number of clusters may be preferred for this
example. As part of their observations, they suggest to “generate greater number of clusters

4 http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4-datasets/.
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Table 4 Clustering performance on the two datasets (a) Classic3 (b) CMU_Newsgroup

Number of
clusters

Evaluation metric Banerjee Tanabe Sra Song MML (Halley)

(a)

3 Message length 100,678,069 100,677,085 100,677,087 100,677,080 100,676,891

Avg. F-measure 0.9644 0.9758 0.9758 0.9780 0.9761

Mutual information 0.944 0.975 0.975 0.982 0.976

16 Message length 100,458,153 100,452,893 100,439,983 100,444,649 100,427,178

Mutual information 1.029 1.036 0.978 1.043 1.040

(b)

20 Message length 728,666,702 728,545,471 728,585,441 728,536,451 728,523,254

Avg. F-measure 0.502 0.470 0.487 0.435 0.509

Mutual information 1.391 1.383 1.417 1.244 1.379

21 Message length 728,497,453 728,498,076 728,432,625 728,374,429 728,273,820

Mutual information 1.313 1.229 1.396 1.377 1.375

Bold values indicate the best results with respect to the corresponding competitors

and combine them appropriately”. However, this is subjective and requires some background
information about the likely number of clusters. Our search method in conjunction with the
inference framework is able to resolve this dilemma and determine the optimal number of
mixture components in a completely unsupervised setting.
CMU_Newsgroup:5 The dataset is a collection of 20 different news categories each contain-
ing 1000 documents. Preprocessing of the data resulted in feature vectors of dimensionality
d = 6448. The data is first modelled using a mixture containing 20 components. The eval-
uation metrics are shown in Table 4b. The average F-measure is 0.509 for MML-based
estimation, slightly better than Banerjee’s score of 0.502. The low F-measure values are
indicative of the difficulty in accurately distinguishing the news categories. The mutual
information score for MML case is 1.379 which is lower than that of Sra’s. However, the
total message length is lower for MML mixture compared to that of others.
Optimal number of clusters: The search method when applied to this dataset infers a 21-
component mixture. This is close to the “true” number of 20 (although there is no strong reason
to believe that each category corresponds to a vMF component). The mutual information for
the 21-cluster assignment is highest for Sra’s mixture with a score of 1.396 and for the MML
mixture, it is 1.375 (see Table 4b). However, the net message length is the least for the MML
mixture.

The analysis of vMF mixtures by Banerjee et al. (2005) for both the datasets considered
here shows a continued increase in the MI scores even beyond the true number of clusters. As
such, using the MI evaluation metric for different number of mixture components does not
aid in the inference of an optimal mixture model. Our search method balances the tradeoff
between using a certain mixture and its ability to explain the observed data, and thus, objec-
tively aids in inferring mixtures to model the normalized vector representations of a given
collection of text documents.

A mixture modelling problem of this kind where there is some information available
regarding the nature of the data can be studied by altering the proposed search method.

5 http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups.
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We provide some alternate strategies where the mixture modelling can be done in a semi-
supervised setting.

– The priors on the number of components and their parameters can be modelled based on
the background knowledge.

– If the true number of clusters are known, only splits may be carried out until we near
the true number (each split being the best one given the current mixture). As the mixture
size approaches the true number, all the three operations (split, delete, and merge) can
be resumed until convergence. This increases the chance that the inferred mixture would
have about the same number of components as the true model.

– Another variant could be to start from a number close to the true number and prefer
delete/merge operations over the splits. We cannot ignore splits completely because
a component after splitting may be merged at a later iteration if there would be an
improvement to the message length.

10.2 Mixture modelling of protein coordinate data

The following application concerns the vMF mixture modelling of directional data arising
from the orientation of main chain carbon atoms in protein structures. The structures that
proteins adopt are largely dictated by the interactions between the constituent atoms. These
chemical interactions impose constraints on the orientation of atoms with respect to one
another. The directional nature of the protein data and the (almost constant) bond length
between the main chain carbon atoms motivate modelling using vMF mixtures. Further,
structural modelling tasks such as generating random protein chain conformations, three-
dimensional protein structure alignment, secondary structure assignment, and representing
protein folding patterns using concise protein fragments require efficient encoding of protein
data (Konagurthu et al. 2012, 2013; Collier et al. 2014). As part of our results, we demonstrate
that vMF mixtures offer a better means of encoding and can potentially serve as strong
candidate models to be used in such varied tasks.

The dataset considered here is a collection of 8453 non-redundant experimentally deter-
mined protein structures from the publicly available ASTRAL SCOP-40 (version 1.75)
database (Murzin et al. 1995). For each protein structure, the coordinates of the central
carbon, Cα , of successive residues (amino acids) are considered. Protein coordinate data
is transformed into directional data and each direction vector is characterized by (θ, φ) =
(co-latitude, longitude), where θ ∈ [0, 180◦] and φ ∈ [0, 360◦]. Note that these (θ, φ) values
have to be measured in a consistent, canonical manner. To compute (θ, φ) corresponding to
the point Pi+1 associated to residue i +1, we consider this point in the context of 3 preceding
points, forming a 4-mer comprising of the points Pi−2, Pi−1, Pi , and Pi+1. This 4-mer is
orthogonally transformed into a canonical orientation in the following steps: (1) translate
the 4-mer such that Pi is at the origin, (2) rotate the resultant 4-mer so that Pi−1 lies on
the negative X-axis, and (3) rotate further so that Pi−2 lies in the XY plane such that the
angle between the vector Pi−2 − Pi−1 and the positive Y-axis is acute. The transformation
yields a canonical orientation for Pi+1 with respect to its previous 3 coordinates. Using the
transformed coordinates of Pi+1, the direction (θ, φ) of Pi+1 is computed. We repeat this
transformation for every successive set of 4-mers in the protein chain, over all possible source
structures in our collection. The data collected in this way resulted in a total of ∼1.3 million
(θ, φ) pairs for all the 8453 structures in the database.

Protein data is an example where the number of mixture components are not known a priori.
Hence, we use the method outlined in Sect. 7 to infer suitable mixture models. The original
dataset comprises of 7 different categories of proteins. The proposed search method using
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Table 5 Message lengths (in bits) for the inferred protein mixtures using various methods

Category Tanabe Sra Song MML (Halley)

β 5,514,800 5,518,679 5,520,073 5,513,507

All 27,818,524 27,833,704 27,839,802 27,803,427

Bold values indicate the best results with respect to the corresponding competitors
‘All’ refers to all the 7 protein categories

Fig. 11 Distribution of data of β class Cα atoms. a Empirical, b mixture density corresponding to the 11
inferred vMF components

MML (Halley’s) estimates infers a mixture containing 13 vMF components. Further, each pro-
tein category can be individually modelled using a mixture. As an example, for the “β class”
proteins which contains 1802 protein structures and 251,346 corresponding (θ, φ) pairs, our
search method terminates after inferring 11 vMF components. We compare the MML-based
mixtures with those inferred by the standalone EM algorithm (Sect. 5.2) using other esti-
mates. These values are presented in Table 5. We observe that the mixtures inferred using the
MML estimates result in a message length lower than that obtained using the other estimates.

The empirical distribution of directional data i.e., the (θ, φ) values corresponding to the
Cα coordinates belonging to β class are plotted in Fig. 11a. Figure 11b is a plot illustrating
the 11-component vMF mixture density as inferred for this class of proteins. Notice that the
two major modes in the figure correspond to commonly observed local secondary structural
bias of residues towards, helices and strands of sheet. Also notice the empty region in the
middle which corresponds to physically unrealizable directions in the local chain, excluded
in the observed samples due to steric hindrance of the atoms in proteins. If we were to model
such data using truncated distributions, the regions of zero probability will be modelled using
an infinite code length. As an example, at (θ, φ) = (100◦, 200◦), the truncated distribution
would have zero probability and consequently an infinite code length. However, when the
same point is explained using the 11-component mixture, it would have a probability of
Pr = 3.36 × 10−12 and a corresponding code length of − log2 Pr = 38.11 bits. For protein
data, it is possible to have such (rare exceptional) observations, due to reasons such as exper-
imental error, noise, or the conformation of the protein itself. Hence, although the empirical
distribution has distinct modes, it is better off modelled as a vMF mixture distribution, rather
than by truncated distributions.
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Table 6 Comparison of the uniform and vMF null model encoding schemes

Null model Total message length
(in bits)

Bits per residue

Uniform 36,119,900 27.437

vMF 32,869,700 24.968

Bold values indicate the best results with respect to the corresponding competitors

Compressibility of protein structures: The explanatory framework of MML allows for testing
competing hypotheses. Recently, Konagurthu et al. (2012) developed a null model description
of protein coordinate data as part of the statistical inference of protein secondary structure.
A null model gives a baseline for transmitting the raw coordinate data. Each Cα atom is
described using the distance and orientation with respect to the precedingCα atoms. Because
the distance between successive Cα atoms is highly constrained, compression can only be
gained in describing the orientation of aCα atom with respect to its previous one. Konagurthu
et al. (2012) describe their null hypothesis by discretizing the surface of a 3D-sphere into
chunks of equal areas (of ε2, where ε is the accuracy of measurement of coordinate data).
This results in 4πr2/ε2 cells distributed uniformly on the surface of the sphere of radius
r (the distance between successive Cα coordinates). To encode Ci+1

α with respect to Ci
α ,

the location of Ci+1
α on the surface is identified and its cell index is encoded. Using this

description, the stated null model results in a message length given by − log2(ε
2/4πr2) bits.

The null model of Konagurthu et al. (2012) assumes a uniform distribution of on the
surface of the sphere. However, this is a crude assumption and one can leverage the directional
properties of protein coordinates to build an efficient null model. To this effect, we explore
the use of vMF mixtures as null model descriptors for protein structures. The message length
expression to encode the orientation angles using vMF mixtures is then given by Eq. 25,
where x corresponds to a unit vector described by (θ, φ) on the surface of the sphere. The
uniform and vMF mixtures are two competing null models. These are used to encode the
directional data corresponding to the 8453 protein structures in the ASTRAL SCOP-40
database. The results are shown in Table 6. The per residue statistic is calculated by dividing
the total message length by the sample size (the number of (θ, φ) pairs). This statistic shows
that close to 2.5 bits can be saved (on average) if the protein data is encoded using the vMF
null model. The vMF null model thus supercedes the naive model of encoding. This can
potentially improve the accuracy of statistical inference that is central to the various protein
modelling tasks briefly introduced above.

vMF Null = − log2

⎛

⎝
M∑

j=1

w j f j (x;Θ j )

⎞

⎠ − 2 log2

(ε

r

)
bits. (25)

11 Conclusion

We presented a statistically robust approach for inferring mixtures of (1) multivariate
Gaussian and (2) von Mises-Fisher distributions. It is based on the general information-
theoretic framework of minimum message length inference. This provides an objective
tradeoff between the hypothesis complexity and the quality of fit to the data. We also provide
a new search procedure for inferring an optimal mixture model that chooses the number of
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component distributions and their respective parameters by minimizing the total message
length. We demonstrated that our proposed search algorithm performs better by comparing
with the popularly used search method of Figueiredo and Jain (2002). We demonstrated the
effectiveness of our approach through extensive experimentation and validation of our results.
We also applied our method to real-world high dimensional text data and to directional data
that arises from protein chain conformations. An extended version of the paper is available
at http://arxiv.org/abs/1502.07813.
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12 Appendix

Supporting derivations required for evaluating κMN and κMH : For brevity, we represent
Ad(κ), A′

d(κ), A′′
d(κ), and A′′′

d (κ) as A, A′, A′′, and A′′′ respectively. Expressions to evaluate
A, A′, and A′′ are given in Eqs. (6), (8), and (9) respectively. We require A′′′ for its use in
the remainder of the derivation and we provide its expression below:

A′′′

A′ = −2AA′′

A′ − 2A′ − (d − 1)

κ

A′′

A′ − 2(d − 1)

κ3

A

A′ + 2(d − 1)

κ2 (26)

We now discuss the derivation of G ′(κ) and G ′′(κ) that are required for computing the MML
estimates κMN and κMH (Eqs. 14 and 15). On differentiating Eq. 12, we get

G ′(κ) = (d − 1)

2κ2 + (d + 1)
(1 − κ2)

(1 + κ2)2 + (d − 1)

2

∂

∂κ

(
A′

A

)
+ 1

2

∂

∂κ

(
A′′

A′

)
+ nA′

and G ′′(κ) = − (d−1)

κ3 + (d+1)
2κ(κ2−3)

(1+κ2)3 + (d−1)

2

∂2

∂κ2

(
A′

A

)
+ 1

2

∂2

∂κ2

(
A′′

A′

)
+ nA′′

Using Eqs. 6 and 8, we have

A′

A
= 1

A
− A − (d − 1)

κ
and

∂

∂κ

(
A′

A

)
= − A′

A2 − A′ + (d − 1)

κ2

∂2

∂κ2

(
A′

A

)
= 2

(A′)2

A3 − A′′

A2 − A′′ − 2(d − 1)

κ3 (27)
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Using Eqs. 6, 8, 9, and 26, we have

A′′

A′ = −2A − (d − 1)

κ
+ (d − 1)

κ2

A

A′ and

∂

∂κ

(
A′′

A′

)
= −2A′ + 2(d − 1)

κ2 − (d − 1)

κ3

A

A′

(
κA′′

A′ + 2

)

∂2

∂κ2

(
A′′

A′

)
= −2A′′ − 4(d − 1)

κ3 − (d − 1)
∂

∂κ

(
AA′′

κ2A′2

)

−2(d − 1)
∂

∂κ

(
A

κ3A′

)

where
∂

∂κ

(
AA′′

κ2A′2

)
= κAA′A′′′ + κA′2A′′ − 2κAA′′2 − 2AA′A′′

κ3A′3 and

∂

∂κ

(
A

κ3A′

)
= 1

κ3 − A

κ4A′2 (κA′′ + 3A′) (28)

Equations 27) and 28 are used to evaluate G ′(κ) and G ′′(κ) which can then be used to
approximate κMN and κMH .
Derivation of the Kullback–Leibler (KL) distance between two von Mises-Fisher distri-
butions: The closed form expression to calculate the KL divergence between two vMF
distributions is presented below. Let f (x) = Cd(κ1)eκ1μ1

T x and g(x) = Cd(κ2)eκ2μ2
T x

be two von Mises-Fisher distributions with mean directions μ1,μ2 and concentration para-
meters κ1, κ2. The KL distance between any two distributions is given by Eq. 29, where E f [.]
is the expectation of the quantity [.] using the probability density function f .

DKL ( f ||g) =
∫

x
f (x) log

f (x)
g(x)

dx = E f

[
log

f (x)
g(x)

]
(29)

For two vMF distributions f and g, we have log
f (x)
g(x)

= log
Cd(κ1)

Cd(κ2)
+ (κ1μ1 − κ2μ2)

T x.

Using the fact that E f [x] = Ad(κ1)μ1 (Mardia et al. 1984; Fisher 1993), we have the
following expression for KL-divergence:

E f

[
log

f (x)
g(x)

]
= log

Cd(κ1)

Cd(κ2)
+ (κ1μ1 − κ2μ2)

T Ad(κ1)μ1

DKL ( f ||g) = log
Cd(κ1)

Cd(κ2)
+ Ad(κ1)(κ1 − κ2μ1

Tμ2) (30)
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