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Abstract. Superposition by orthogonal transformation of vector sets by
minimizing the least-squares error is a fundamental task in many areas
of science, notably in structural molecular biology. Its widespread use
for structural analyses is facilitated by exact solutions of this problem,
computable in linear time. However, in several of these analyses it is com-
mon to invoke this superposition routine a very large number of times,
often operating (through addition or deletion) on previously superposed
vector sets. This paper derives a set of sufficient statistics for the least-
squares orthogonal transformation problem. These sufficient statistics
are additive. This property allows for the superposition parameters (ro-
tation, translation, and root mean square deviation) to be computable as
constant time updates from the statistics of partial solutions. We demon-
strate that this results in a massive speed up in the computational effort,
when compared to the method that recomputes superpositions ab initio.
Among others, protein structural alignment algorithms stand to benefit
from our results.

1 Introduction

Optimal superposition through orthogonal transformation of vector sets forms
the linchpin of macromolecular structure comparison [1, 2]. This task is ubiq-
uitously used to analyse globular three-dimensional structures of proteins [3].
Orthogonal transformation involves finding the best rigid-body rotation and
translation of two vector sets that are in one-to-one correspondence so that
they can be superimposed. This superposition immediately provides a quali-
tative (through visual inspection) as well as a quantitative measure of shape
similarity.

An almost universally used criterion to define the best superposition of vec-
tor sets is the one that minimizes the sum of square errors over the entire
search space of possible rotations and translations. This results in a quantita-
tive measure, root mean square deviation (or r.m.s.d.) after best superposition.
This measure is central in assessing the quality of superposition with attractive
metrical properties.



Superpositions pervade protein structural analyses because they provide es-
sential information about comparisons of conformations of structures and sub-
structures; it is remarkable and comes in handy that optimal superposition of
aligned sets of points can be computed exactly and efficiently [3]. Given the im-
portance of this routine, several approaches have been proposed to address this
problem over the years [4–14]. However, among the most-widely used approach
to solve this problem is the method of Kabsch [5] that solves this problem us-
ing Lagrange multipliers that constrain the search to pure rotations (and avoid
improper ones).

An equivalent, but a more elegant, approach to solving the same problem
was proposed by Kearsley [11] using the mathematical object called quater-
nions [15]. Quaternions are generalizations of complex numbers with direct ap-
plications to transformations in three dimensional space. Specifically, the space
group corresponding to unit quaternions is equivalent to the group of all pos-
sible pure rotations in three dimensions (3D) defined about an arbitrary ori-
gin. That is, any 3D pure rotation by an angle θ about some normalized axis
n̂ passing through the origin can be represented using a unit quaternion as

follows:

[
cos

(
θ

2

)
, n̂ sin

(
θ

2

)]
. Among the key advantages of using Kearsley’s

quaternion method to solve the least-squares superposition problem are: (1)
the problem can be solved analytically in quaternion parameters, and (2) the
method avoids problems with singularities (and rotoinversions) that can result
from using Kabsch’s approach, where these oddities are handled explicitly after
the solution is found [11, 13]. In general, the least-squares superposition involves
a computational effort that asymptotically grows linearly with the number of
corresponding points being superimposed.

Many methods that facilitate analyses involving protein structures employ
least-squares superpositions. Among the primary example of this is when com-
puting the residue-residue correspondences betweeen two or more protein struc-
tures – the structural alignment problem. Many popular methods build an align-
ment between structures using orthogonal superpositions of fragments [9, 16–23].
The general strategy involves finding aligned (contiguous) fragment pairs that
are often maximally extended, one residue-residue correspondence at a time
starting from some minimum fragment size, until the fragment pairs superposes
within some specified threshold of r.m.s.d. This results in a library of well-fitting
fragment pairs, construction effort of which grows as a cubic in the length of
the structures being aligned (O(n2) number of superpositions, each taking O(n)
superposition effort, where n is the number of residues in the structures be-
ing aligned). Further, by computing the joint superpositions of these well-fitting
maximal fragment pairs, a structural alignment is assembled by collecting frag-
ment pairs that superpose consistently. This involves repeated concatenation and
superposition calls using the fragment pairs in the library. Such superpositions
are currently recomputed from scratch (even though the previous superposi-
tions provide a wealth of information about the joint superposition, as we shall
demonstrate in the forthcoming sections). It can be seen that the number of joint



superpositions grows (at least) quadratically in the size of the fragment library,
with each joint superposition taking a linear effort in the size of the concatenated
vector sets.

Although the optimal solution of the least-squares superposition problem
can be computed extremely efficiently, the algorithmic complexity term hides
a sizeable constant factor. This imposes a significant computational demand
when performing a large number of superpositions, as required for computing
pairwise structural alignments. The amount of time spent in superposing frag-
ments quickly becomes computationally impractical when aligning multiple pro-
tein structures simultaneously, where the multiple structural alignment is com-
monly built using all-vs-all pairwise structural alignments, each of which makes
a very large number of calls to the superposition routine.

Contribution of this work: In this paper we explore the theoretical underpin-
ning of the orthogonal superposition problem and derive a set of statistics that
are sufficient to compute the r.m.s.d of best superposition, and its correspond-
ing rotation and translation parameters). We demonstrate that these sufficient
statistics [24] are additive. Thus these statistics can be used to compute new
superpositions as constant time updates using the statistics of the partial solu-
tions. Using such an approach results in a drastic speed up in comparison with
the approach that recomputes the new superposition from scratch.

Organization of this paper: Section 2 gives the basic background of the or-
thogonal superposition problem using the widely-used least-squares criterion.
Section 3 introduces the statistical aspects of sufficient statistics, and derives
the full set of sufficient statistics for the optimal orthogonal superposition prob-
lem. Section 4.1 provides the mechanics of performing constant-time updates to
superpositions building on the sufficient statistics of previous (partial) super-
positions. Section 5 describes an approach to speed up the diagonalization step
used in the Kearsley approach. Finally, the paper ends with an experimental
evaluation of computing optimal superpositions using sufficient statistics.

2 Orthogonal superposition

Formally let U = {u1, · · · ,un} and V = {v1, · · · ,vn} denote two vector sets with
one-to-one correspondence. In this paper we consider vectors in three dimensions.
Let the (x, y, z) components of each ui be represented here as (ui(x),ui(y),ui(z)).
(Similar representation holds for vi or any other vector.)

The rigid-body least-squares superposition problem is a constrained opti-
mization problem that involves finding the best rotation (matrix) R and trans-
lation (vector) t with the optimality criterion defined as:

E = min |RU+t−V|2 = min

n∑
i=1

|Rui+t−vi|2 = min

n∑
i=1

〈Rui + t− vi,Rui + t− vi〉



where 〈·, ·〉 denotes the inner product between the stated terms, R is a 3 × 3
pure rotation matrix, and t is a translation vector.

Under this least-squares criterion, the translation with respect to the optimal
superposition is independent of rotation. This can be easily seen by differentiat-
ing E with respect to t and evaluating it at its extremum:

∂E
∂t

=
∂

∂t

n∑
i=1

〈Rui + t− vi,Rui + t− vi〉 =

n∑
i=1

2
∂(Rui + t− vi)

∂t
(Rui + t− vi) = 0

=⇒
n∑

i=1

Rui + t− vi = 0

=⇒ t =

∑n
i=1 vi

n
−R

∑n
i=1 ui

n
= Centroid(V)−R Centroid(U)

It follows that moving each of the vector sets to an origin at its centroid, about
which the rotation is defined, gives us a modified (but equivalent) objective
which is independent of the translation t:

E = min

n∑
i=1

|Ru′i − v′i|2

where, ui
′ = ui −

∑n
i=1 ui
n

and vi
′ = vi −

∑n
i=1 vi
n

.

Kearsley [11] proposed an elegant method that removes the non-linear aspect
to this the least-squares problem and transforms it to an eigenvalue problem of
the form Qq = λq, where Q is a 4× 4 square symmetric matrix


∑

(x2
m + y2

m + z2m)
∑

(ypzm − ymzp)
∑

(xmzp − xpzm)
∑

(xpym − xmyp)∑
(ypzm − ymzp)

∑
(x2

m + y2
p + z2p)

∑
(xmym − xpyp)

∑
(xmzm − xpzp)∑

(xmzp − xpzm)
∑

(xmym − xpyp)
∑

(x2
p + y2

m + z2p)
∑

(ymzm − ypzp)∑
(xpym − xmyp)

∑
(xmzm − xpzp)

∑
(ymzm − ypzp)

∑
(x2

p + y2
p + z2m)

 , (1)

q = (q1, q2, q3, q4)
T

=

(
cos

(
θ

2

)
, n̂(x) sin

(
θ

2

)
, n̂(y) sin

(
θ

2

)
, n̂(z) sin

(
θ

2

))T

are the (unknown or to be solved) quaternion components associated with some
rotation θ about a normalized axis n̂, and λ is an (unknown) eigenvalue. In
Equation 1, we use the notation xm to denote the component-wise difference
v′i(x)− u′i(x) (and similarly ym and zm) and xp to denote the component-wise
sum v′i(x)+u′i(x) (similarly yp and zp). From this point onwards, we use the term
quaternion matrix to indicate the 4× 4 square symmetric matrix in Equation 1
and denote it as Q.

Diagonalizing this matrix yields four eigenvalues and (corresponding) eigen-
vectors. The eigenvector corresponding to the smallest eigenvalue, λmin, cor-
responds to the rotation producing the least-squares error, and the r.m.s.d is

computed as

√
λmin

n



Time complexity The computational effort that takes to solve the rigid-body
superposition problem using Kearsley’s quaternion approach (or equivalently
Kabsch’s approach) grows linearly with the number of vectors being superim-
posed. In Kearsley’s approach this is dominated by the computation of the Q
where each of 10 distinct terms in the matrix requires O(n) effort. The diagonal-
ization of Q is independent of n and shows a rapid convergence with numerical
methods such as Jacobi’s diagonalization algorithm [25].

3 Sufficient Statistics

We note that this rigid-body superposition problem is a geometric instance of
the general regression problem using total least-squares, where a regression line
is determined that minimizes the sum of the squared errors of the observed data
with respect to it.

It is widely known that solution of the regression problem produces error
terms that are normally distributed as N (0, σ) where the mean µ is 0 and σ
is the standard deviation which is minimized by the problem. In fact, the least
squares estimator of σ is also its maximum likelihood estimator.

More formally, consider the standard normal distribution of some random
variable x:

N (x|µ, σ) =
1√
2πσ

exp

[
− (x− µ)2

2σ2

]
This normal density can be reparameterized into a general form denoting the
family of exponential distributions:

f(x|η) = h(x)g(η) exp(ηTU(x))

where h(x) =
1√
π

, g(η2) =
√
−η2 exp

(
η21
4η2

)
, ηT = (

µ

σ2
,− 1

2σ2
), UT (x) =

(x, x2).
This transformation can be used to show certain important properties that

allows efficient computation of maximum likelihood estimators of µ and σ.
Considering a sample set of observations that are normally distributed X =

{x1, x2, · · · , xn}. The likelihood for these samples is given by:

f(X|η) =

(
n∏

i=1

h(xi)

)
(g(η))

n
exp(ηT

n∑
i=1

u(xi))

Taking natural logarithms on both sides gives us the log likelihood:

log(f(X|η)) = κ+ n log (g(η)) + ηT
n∑

i=1

U(xi)

where κ =

n∑
i=1

log(h(xi)) is a term independent of η.



To find the maximum likelihood estimators η̂, take the gradient with respect
to η and set to 0. This results in:

n∇η̂ [log (g(η̂))] +

n∑
i=1

U(xi) = 0

=⇒ −∇η̂ [log (g(η̂))] =
1

n

n∑
i=1

U(xi)

=
−1

g(η̂)
∇η̂g(η̂) =

1

n

n∑
i=1

U(xi)

Notice that maximum likelihood estimate η̂ depends on the statistic

n∑
i=1

U(xi)

rather than the individual data. This suggests that to obtain the maximum like-
lihood estimate we do not need the data explicitly as it can be derived from
that statistic. This sufficiency to derive the maximum likelihood estimator with-

out explicit consideration of data makes

n∑
i=1

U(xi) a sufficient statistic for the

exponential family of functions. For normal distribution, we saw earlier that

U(xi) = (xi, x
2
i ) gives the sufficient statistics of

n∑
i=1

xi and

n∑
i=1

x2i [24].

Sufficient statistics for orthogonal superposition
We note that each error term, εi = Rui

′ − vi′, is assumed to be normally
distributed: i.e., εi ∼ N (µ = 0, σ). We now derive the sufficient statistics for
σ of εis, which is equivalent to the r.m.s.d. after least-squares superposition.
The likelihood of the observed normally distributed errors after superposition,
E = {ε1, . . . , εn}, can be written as:

f(ε1, . . . , εn|σ) =

n∏
i=1

(2πσ2)−
1
2 exp

(
− 1

2σ2
‖Rui′ − vi′‖2

)

= (2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

‖Rui′ − vi′‖2
)

(2)

Let’s examine the decomposition of

ε2i = ‖Rui′ − vi′‖2 = ‖ui′‖2 + ‖vi′‖2 − 2vi
′TRui

′ (3)

From Equation 1, the matrix Q is made up of terms of the form

Am = v′i(A)− u′i(A) and Ap = v′i(A) + u′i(A)

where each A and B take the values {x, y, z} denoting vector components.
Rewriting, we get

v′i(A) =
Ap +Am

2
and u′i(A) =

Ap −Am

2



The first two terms on the right hand side of Equation 3 can be expanded as
follows:

‖ui′‖2 + ‖vi′‖2 = (u′i(x)2 + u′i(y)2 + u′i(z)
2) + (v′i(x)2 + v′i(y)2 + v′i(z)

2)

=
1

2
(x2m + x2p + y2m + y2p + z2m + z2p)

=
1

2

∑
A∈{x,y,z}

A2
m +

1

2

∑
A∈{x,y,z}

A2
p (4)

The last term on the right hand side of Equation 3 can be expanded as vi
′TRui

′ =

vi
′T[r1 r2 r3]ui

′ where r1, r2, r3 are column vectors of the 3×3 rotation matrix
R. Therefore,

vi
′TRui

′ = (vi
′.r1)u′i(x) + (vi

′.r2)u′i(y) + (vi
′.r3)u′i(z) (5)

Take the first term on the right hand side of Equation 5. This can be expanded
as:

(vi
′.r1)u′i(x) = r11v

′
i(x)u′i(x) + r12v

′
i(y)u′i(x) + r13v

′
i(z)u

′
i(x)

=
r11
4

(xp + xm)(xp − xm) +
r12
4

(yp + ym)(xp − xm) +
r13
4

(zp + zm)(xp − xm)

=
r11
4

(x2p − x2m) +
r12
4

(ypxp − ypxm + ymxp − ymxm)

+
r13
4

(zpxp − zpxm + zmxp − zmxm)

where r11, r12, r13 are the terms in the r1 column vector in R. More generally,

(vi
′.r1)u′i(x) = c1A

2
p + c2A

2
m + c3ApBp + c4AmBm + c5AmBp (6)

where ck are constants in terms of components of r1.
Similarly, (vi

′.r2)u′i(y) and (vi
′.r3)u′i(z) can be expanded as above and will

have the same form as (6) but with different constants. Therefore, combining
Equations 4-5, the equation 3 can be written as

ε2i = ζ1
∑
A

A2
p + ζ2

∑
A

A2
m + ζ3

∑
∀A6=B

ApBp + ζ4
∑
∀A 6=B

AmBm + ζ5
∑
∀A 6=B

AmBp

where ζk are constants. Hence, the likelihood function can be written as

f(ε1, . . . , εn|σ) = (2πσ2)−
n
2 exp

(
− 1

2σ2
U

)
(7)

where

U =

n∑
i=1

ζ1∑
A

A2
p + ζ2

∑
A

A2
m + ζ3

∑
∀A 6=B

ApBp + ζ4
∑
∀A6=B

AmBm + ζ5
∑
∀A6=B

AmBp





and A,B ∈ {x, y, z}
Using Equation 7, the negative log-likelihood is given as:

L(ε1, . . . , εn|σ) =
n

2
log(2π) + n log σ +

1

2σ2
U (8)

The maximum likelihood estimate σ̂ can be determined by minimising Equation
8 and evaluating the corresponding σ, i.e.

∂L
∂σ

= 0 =⇒ σ̂2 =
U

n
(9)

U involve statistics that do not take into account the data explicitly, and are
sufficient to estimate σ (or r.m.s.d). Therefore the set of sufficient statistics for
the least-squares superposition problem can be defined as:

Ψ =

{
n∑

i=1

Am,

n∑
i=1

Ap,

n∑
i=1

AmBm,

n∑
i=1

AmBp,

n∑
i=1

ApBp

}
(10)

where A and B take the values {x, y, z}, Am = vi
′(A)−ui′(A) is the component-

wise difference (similarly Bm), and Ap = vi
′(A) +ui

′(A) is the component-wise
sum (similarly Bp). Altogether, the set Ψ consists of 24 distinct statistics.

In addition, using the same notation, the statistics required to compute the

centroid are of the form

n∑
i=1

ui
′(A) and

n∑
i=1

vi
′(A), and these are equivalent to∑

∀A

Am and
∑
∀A

Ap.

4 Updating sufficient statistics

4.1 Addition operation on vector sets using sufficient statistics

Consider two pairs of corresponding vector sets: Q ↔ R containing n1 corre-
spondences and S ↔ T containing n2 correspondences. Let U be defined as a
combination of vectors Q and S) and similarly V as a combination of R and
T . Let Ψ1 denote the sufficient statistics of superposing the first pair and Ψ2

denote the same for the second pair. Define these as:

Ψ1 =

{
n1∑
i=1

Cm,

n1∑
i=1

Cp,

n1∑
i=1

CmDm,

n1∑
i=1

CmDp,

n1∑
i=1

CpDp

}
(11)

Ψ2 =

{
n2∑
i=1

Em,

n2∑
i=1

Ep,

n2∑
i=1

EmFm,

n2∑
i=1

EmFp,

n2∑
i=1

EpFp

}
(12)

Where C,D,E and F are all either {x, y, z} denoting the components of the
corresponding vectors in the vector sets under consideration. Consistent with



the previous notation (see Equation 10), Cp and Cm (similarly Dp and Dm)
are the component-wise sums and differences between corresponding vectors in
Q and R. The same definitions hold for Em (and Ep) and Fm (and Fp), with
respect to corresponding vectors in S and T .

We want to use Ψ1 and Ψ2 to compute a new set of sufficient statistics Ψ
(defined in Equation 10) for the superposition of vector sets U = Q + S with
V = R+ T . Below we derive the construction of the new sufficient statistics.

The statistics involved in computing the new centroids of the sets U and V,
n=n1+n2∑

i=1

u(A) and

n=n1+n2∑
i=1

v(A), can be trivially updatated using the statistics

n1∑
i=1

q(C),

n1∑
i=1

r(D),

n2∑
i=1

s(E), and

n2∑
i=1

t(F ).

To compute the remaining statistics in Ψ, define vectors:

α1 = Centroid(U)−Centroid(Q) β1 = Centroid(V)−Centroid(R)
α2 = Centroid(U)−Centroid(S) β2 = Centroid(V)−Centroid(T ).

These vectors define the corrections that are required to be made to the previous
centroids to recover the updated ones.

Lemma 1.

n=n1+n2∑
i=1

Am =

[
n1∑
i=1

Cm + n1∆
C
m

]
+

[
n2∑
i=1

Em + n2∆
E
m

]
, where ∆C

m =

β1(C)−α1(C) and ∆E
m = β2(E)−α2(E) and A = C = E ∈ {x, y, z}

Proof.

n=n1+n2∑
i=1

Am =

[
n1∑
i=1

[(r′(C) + β1(C))− (q′(C) +α1(C))]

]

+

[
n2∑
i=1

[(t′(E) + β2(E))− (s′(E) +α2(E))]

]

=

[
n1∑
i=1

(r′(C)− q′(C)) + (β1(C)−α1(C))

]

+

[
n2∑
i=1

(t′(C)− s′(C)) + (β2(E)−α2(E))

]

=

[
n1∑
i=1

Cm +

n1∑
i=1

∆C
m

]
+

[
n2∑
i=1

Em +

n2∑
i=1

∆E
m

]

=

[
n1∑
i=1

Cm + n1∆
C
m

]
+

[
n2∑
i=1

Em + n2∆
E
m

]



Corollary 1.

n∑
i=1

Ap =

[
n1∑
i=1

Cp + n1∆
C
p

]
+

[
n2∑
i=1

Ep + n2∆
E
p

]

Lemma 2.

n=n1+n2∑
i=1

AmBm =

[
n1∑
i=1

CmDm +∆C
m

n1∑
i=1

Dm +∆D
m

n1∑
i=1

Cm + n1∆
C
m∆

D
m

]

+

[
n2∑
i=1

EmFm +∆E
m

n2∑
i=1

Fm +∆F
m

n2∑
i=1

Em + n2∆
E
m∆

F
m

]

where ∆C
m = β1(C) − α1(C), ∆D

m = β1(D) − α1(D), ∆E
m = β2(E) − α2(E),

and ∆F
m = β2(F )−α2(F ) A = C = E ∈ {x, y, z} and B = D = F ∈ {x, y, z}

Proof.

Updated(

n1∑
i=1

CmDm) =

n1∑
i=1

[(r′(C) + β1(C))− (q′(C) +α1(C))]

[(r′(D) + β1(D))− (q′(B) +α1(D))]

=

n1∑
i=1

[(r′(C)r′(D)− q′(C)q′(D)− r′(C)q′(D) + q′(C)r′(D)]

+

n1∑
i=1

[(β1(C)r′(D)−α1(C)r′(D)− β1(C)q′(D) +α1(C)q′(D)]

+

n1∑
i=1

[(r′(C)β1(D)− r′(C)α1(D)− q′(C)β1(D) + q′(C)α1(D)]

+

n1∑
i=1

[(β1(C)β1(D)−α1(C)β1(D)− β1(C)α1(D) +α1(C)α1(D)]

=

n1∑
i=1

CmDm +

n1∑
i=1

∆C
mDm +

n1∑
i=1

∆D
mCm +

n1∑
i=1

∆C
m∆

D
m

=

n1∑
i=1

CmDm +∆C
m

n1∑
i=1

Dm +∆D
m

n1∑
i=1

Cm + n1∆
C
m∆

D
m

Similarly, we can show that:

Updated(

n2∑
i=1

EmFm) =

n2∑
i=1

EmFm +∆E
m

n2∑
i=1

Fm +∆F
m

n2∑
i=1

Em + n2∆
E
m∆

F
m

Adding the two updated statistics, the lemma follows.



Corollary 2.

n=n1+n2∑
i=1

A2
m =

n=n1+n2∑
i=1

AmAm =

[
n1∑
i=1

CmCm + 2∆C
m

n1∑
i=1

Cm + n1
(
∆C

m

)2]

+

[
n2∑
i=1

EmEm + 2∆E
m

n2∑
i=1

Em + n2
(
∆E

m

)2]

Corollary 3.

n=n1+n2∑
i=1

ApBp =

[
n1∑
i=1

CpDp +∆C
p

n1∑
i=1

Dp +∆D
p

n1∑
i=1

Cp + n1∆
C
p ∆

D
p

]

+

[
n2∑
i=1

EpFp +∆E
p

n2∑
i=1

Fp +∆F
p

n2∑
i=1

Ep + n2∆
E
p ∆

F
p

]

Corollary 4.

n=n1+n2∑
i=1

A2
p =

n=n1+n2∑
i=1

ApAp =

[
n1∑
i=1

CpCp + 2∆C
p

n1∑
i=1

Cp + n1
(
∆C

p

)2]

+

[
n2∑
i=1

EpEp + 2∆E
p

n2∑
i=1

Ep + n2
(
∆E

p

)2]

Lemma 3.

n=n1+n2∑
i=1

AmBp =

[
n1∑
i=1

CmDp +∆C
m

n1∑
i=1

Dp +∆D
p

n1∑
i=1

Cm + n1∆
C
m∆

D
p

]

+

[
n2∑
i=1

EmFp +∆E
m

n2∑
i=1

Fp +∆F
p

n2∑
i=1

Em + n2∆
E
m∆

F
p

]

where ∆C
m = β1(C) − α1(C), ∆D

m = β1(D) − α1(D), ∆E
m = β2(E) − α2(E),

and ∆F
m = β2(F )−α2(F ) A = C = E ∈ {x, y, z} and B = D = F ∈ {x, y, z}

Proof.

Updated(

n1∑
i=1

CmDp) =

n1∑
i=1

[(r′(C) + β1(C))− (q′(C) +α1(C))]

[(r′(D) + β1(D)) + (q′(B) +α1(D))]



=

n1∑
i=1

[(r′(C)r′(D)− q′(C)q′(D) + r′(C)q′(D)− q′(C)r′(D)]

+

n1∑
i=1

[(β1(C)r′(D)−α1(C)r′(D) + β1(C)q′(D)−α1(C)q′(D)]

+

n1∑
i=1

[(r′(C)β1(D)− r′(C)α1(D) + q′(C)β1(D)− q′(C)α1(D)]

+

n1∑
i=1

[(β1(C)β1(D)−α1(C)β1(D) + β1(C)α1(D)−α1(C)α1(D)]

=

n1∑
i=1

CmDp +

n1∑
i=1

∆C
mDp +

n1∑
i=1

∆D
mCp +

n1∑
i=1

∆C
m∆

D
p

=

n1∑
i=1

CmDp +∆C
p

n1∑
i=1

Dm +∆D
m

n1∑
i=1

Cp + n1∆
C
m∆

D
p

Similarly, we can show that:

Updated(

n2∑
i=1

EmFp) =

n2∑
i=1

EmFp +∆E
m

n2∑
i=1

Fp +∆F
p

n2∑
i=1

Em + n2∆
E
m∆

F
p

Adding the two updated statistics, the lemma follows.

4.2 Deletion operation of vector sets using sufficient statistics

Let us consider the case where we want to find a superposition under a deletion
operation. That is, let Q ↔ R and S ↔ T denote two pairs of vector sets that
are in correspondence. Let S ⊂ Q and T ⊂ R. Under this assumption, let us
define U = Q− S and V = R− T .

Using the same notations as in the previous section, it is straightforward
to see that the sufficient statistics Ψ of the superposition of U with V can be
derived from the sufficient statistics Ψ1 (of Q ↔ R) and Ψ2 (of S ↔ T ). The
update rules defining the deletion operation are similar to the ones described
above, so we leave these rules to the reader as an exercise.

5 Computing the r.m.s.d. from updated sufficient
statistics

It is easy to see that Kearsley’s 4 × 4 quaternion matrix Q given in Equation
1 can be constructed using the updated sufficient statistics Ψ derived from Ψ1

and Ψ2. The matrix Q contains 10 distinct elements (given that Q is square
symmetric) which can be computed in constant time.



In practice, Q is diagonalized using the Jacobi’s iterative rotation approach,
which with each rotation annihilates an off-diagonal element. This approach has
a fast convergence, and requiring no additional optimization. However, in many
cases the updated superposition shows only a marginal change from the previous
one. For example, if we were to extend a current superposition by one pair of
residues, the resultant new transformation will often, in practice, be very close
to the previously computed one. This allows the diagonalisation to build on the
previous solution.

Let Q denote the Kearsley’s 4×4 matrix corresponding to the superposition
of corresponding vector sets U and V. From eigen decomposition theorem, we
get Q = SΛS−1, where S is the matrix of eigenvectors and Λ is the diagonal
matrix of eigenvalues. Also note that Q is positive semidefinite matrix with the
property QTQ = QQT . This implies that all the eigenvectors are orthogonal to
each other. This further simplifies the decomposition to Q = SΛST . Also, since
S is an orthogonal matrix, Q = SΛST =⇒ Λ = STQS.

Now, assume that the corresponding vector sets are augmented from U and
V to U ′ and V ′, resulting in an updated Kearsley’s matrix Q′. We want to

diagonalize this matrix into S′Λ′S′
T

. Instead of starting the Jacobi’s iterative
process from scratch, we use the previously computed eigenvectors (before the
vector sets were augmented), S, and compute Λ̃ as STQ′S. Notice that if the
augmentation does not include drastic changes, then Λ̃ is nearly diagonal (that is,
Λ̃ ≈ Λ′), thus requiring very few iterations to fully diagonalize Λ̃. This provides
a further optimization to the diagonalization step under update operations on
vector sets.

6 Experiments

C++ programs were developed to compare the performance gain using sufficient
statistics, when compared with the approach which recomputes the superposition
ab initio.

8992 ASTRAL SCOP [26, 27] domains were as the source structures from
which superposable fragments are randomly sampled. The general procedure of
sampling is as follows. From the list of source structures, uniformly randomly
choose a particular structure. Within this structure choose 2 random fragments
of lengths l1 and l2, where the length is between 10 and 40 residues. These chosen
fragments form the setsQ and S. Yet another structure is again randomly chosen,
and two fragments are sampled from it such that their lengths are strictly l1 and
l2 respectively. These form the sets R and T .

Assuming one-to-one correspondence between Q ↔ R we compute the suf-
ficient statistics Ψ1 of their orthogonal superposition. Similarly the sufficient
statistics Ψ2 is computed for the orthogonal superposition between R ↔ T .
Define U = Q+ S and V = R+ T .

Iterating this process over 100 million such random samples, we compute:

1. The time it takes to superpose U ↔ V and compute r.m.s.d from scratch.



2. The time it takes to superpose the same and compute r.m.s.d using the
sufficient statistics Ψ1 and Ψ2

3. The difference between the two r.m.s.d values. (This is performed to ascer-
tain the numerical stability involved in computing the r.m.s.d. values from
sufficient statistics.)
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Fig. 1. The CPU times (in seconds) performing joint superpositions from scratch (Red
line) compared against the same using sufficient statistics (Blue line) over 100 million
random fragment data sets derived from ASTRAL SCOP domains. The X-axis reports
the number of joint superpositions divided by 10,000.

Figure 1 compares the run times for the data set discussed above. Without
sufficient statistics the run times takes 1.15 hours to conduct 100 million joint
superpositions, while the same task is be achieved in 261 seconds (≈4 minutes)
using sufficient statistics. This shows a drastic improvement in the run time.

These empirical runtime results demonstrate what we have shown in Section
4.1, that the updates using sufficient statistics can be performed in constant
time. If |J | is the number of joint superpositions and n is the (average) number
of points being superposed, then the first method grows asO(n|J |). Since n� |J |
we see a linear trend (with a steeper gradient accounting for the multiplier n in
the complexity term). In comparison, the results with sufficient statistics grow
simply as O(|J |) with a small gradient, made possible due to constant time
computation of r.m.s.d values (using sufficient statistics) in each iterations.

To assess the numerical stability of our approach, we computed the r.m.s.d.
values using the two approaches. The mean and standard deviation of the dif-
ference between the two r.m.s.d values were then computed. Both the mean and



the standard deviation are zero Å up to double precision. This demonstrates the
numerical stability of computing r.m.s.d. using sufficient statistics.

7 Conclusion

Optimal superpositions of vector sets provide the foundation to determine sim-
ilarities and differences between spatial objects, especially for macromolecular
structures. We derived a set of sufficient statistics for the orthogonal superpo-
sition problem minimizing the sum of squares error. These statistics provide
a highly efficient method to operate (via addition and deletion of vectors) on
the existing superpositions. Our results demonstrate a drastic improvement in
the computational effort required to compute r.m.s.d. using sufficient statistics.
These results are relevant to many analyses involving structural data. These in-
clude the plethora of algorithms to construct pairwise and multiple protein struc-
tural alignments by assembling fragment pairs. Source code (written in C++)
to undertake superpositions of vector sets using sufficient statistics can be down-
loaded from http://www.csse.monash.edu.au/~karun/suffStatSuperpose.html
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