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ABSTRACT

The problem of superposition of two corresponding vector sets by minimizing their sum-of-
squares error under orthogonal transformation is a fundamental task in many areas of
science, notably structural molecular biology. This problem can be solved exactly using an
algorithm whose time complexity grows linearly with the number of correspondences. This
efficient solution has facilitated the widespread use of the superposition task, particularly in
studies involving macromolecular structures. This article formally derives a set of sufficient
statistics for the least-squares superposition problem. These statistics are additive. This
permits a highly efficient (constant time) computation of superpositions (and sufficient sta-
tistics) of vector sets that are composed from its constituent vector sets under addition or
deletion operation, where the sufficient statistics of the constituent sets are already known
(that is, the constituent vector sets have been previously superposed). This results in a drastic
improvement in the run time of the methods that commonly superpose vector sets under
addition or deletion operations, where previously these operations were carried out ab initio
(ignoring the sufficient statistics). We experimentally demonstrate the improvement our work
offers in the context of protein structural alignment programs that assemble a reliable
structural alignment from well-fitting (substructural) fragment pairs. A C++ library for this
task is available online under an open-source license.
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1. INTRODUCTION

Optimal superposition of two corresponding vector sets is a commonly used method to measure

spatial similarity of three-dimensional (3D) objects. In this method, treating both the vector sets as rigid

bodies, one set is rotated and translated to fit on another. Such superposition of vector sets permits the

evaluation of shape similarity both qualitatively and visually. A nearly universal criterion of optimality for

the superposition problem is the one that minimizes the sum of squared deviations between the corresponding
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vectors after superposition (or least-squares superposition, in short). This yields a reliable quantitative

measure of similarity, the root mean square deviation (or r.m.s.d.) between vector sets (Eidhammer et al.,

2004; Lesk, 2000, 2001).

Many approaches to address the least-squares superposition problem in three dimensions (3D) have been

proposed over the years (Cohen, 1997; Coutsias et al., 2004; Cox, 1967; Diamond, 1988; Kabsch, 1976,

1978; Kearsley, 1989; KenKnight, 1984; Koehl, 2001; Lesk, 1986; Mackay, 1984; McLachlan, 1972,

1982). It is indeed remarkable that this problem can be solved exactly and efficiently, and involves a

computational effort that grows linearly with the number of correspondences in the vector sets. Noteworthy

of the approaches to solve the superposition problem is the method by Kabsch (1976) that allows com-

puting the optimal transformation via singular value decomposition of a covariance matrix derived from the

coordinates of the corresponding vector sets. An equivalent, and more analytically elegant, approach for

this problem proposed by Kearsley (1989) uses the algebra of quaternions (Hamilton and Hamilton, 1866).

Quaternions are generalizations of complex numbers with direct applications to orthogonal transformations

in three-dimensional (3D) space. Specifically, the space group corresponding to unit quaternions is

equivalent to the group of all possible proper 3D rotations defined about an arbitrary origin. Any pure

rotation in 3D by an angle h about some normalized axis n̂ passing through the origin can be represented

using a unit quaternion denoted by [ cos( h
2
)‚ n̂ sin( h

2
)]. Among the key advantages of using Kearsley’s

method to solve the least-squares superposition problem are

1. the problem can be solved analytically as an eigenvalue and eigenvector problem in quaternion

parameters, and

2. the method avoids problems with singularities (and rotary inversions) that can result from Kabsch’s

method, where these oddities are handled explicitly after the solution is found (Coutsias et al., 2004;

Kearsley, 1989).

Structural molecular biology employs least-squares superposition to support a wide variety of tasks. An

example is the role of superposition in programs for aligning protein 3D structures (Kolodny et al., 2005;

Konagurthu et al., 2006; Lackner et al., 2000; Lesk, 1986; Shatsky et al., 2002, 2004; Shindyalov and

Bourne, 1998; Vriend and Sander, 1991; Ye and Godzik, 2003). A structural alignment is the assignment of

amino acid residue–residue correspondences between proteins based on the similarity of their structural

contexts (Konagurthu et al., 2006). Among the commonly used heuristics to align protein structures are the

ones that rely on identifying a library of well-fitting fragments (or contiguous substructures) within the

protein structures being aligned. This library is then refined by jointly superposing the fragment pairs and

determining the pairs that fit consistently, from which a structural alignment is finally assembled.

The joint superpositions in the current structural aligners are computed from scratch, even though pre-

vious superpositions of constituent fragment pairs provide a lot of information about the joint superposition.

We can see that the number of joint superpositions grows quadratically in the size of the well-fitting

fragment-pairs library, where each joint superposition takes a computational effort that is linear in the size of

the combined vector sets. On average, when aligning a pair of homologous protein structures, there are well

in excess of a thousand well-fitting fragment pairs, exhaustively requiring millions of joint superpositions

before a structural alignment can be assembled. This exhaustive step poses a significant computational

bottleneck for structural aligners, and, therefore, this problem is commonly mitigated by invoking joint

superpositions rather restrictively, trading off potential structural alignment quality for speed.

In this article we explore the foundations of the orthogonal superposition problem and derive a set of

statistics that are sufficient to compute the r.m.s.d. of the best superposition, and its corresponding rotation

and translation parameters. We demonstrate that these sufficient statistics (Hogg and Craig, 1994) are

additive. Therefore, these statistics can be used to compute new superpositions in constant time using the

sufficient statistics of superpositions of constituent vector sets under addition and deletion operations.

Using sufficient statistics results in a drastic speed up of tasks like joint superposition described above,

compared to the current approaches that recompute these superpositions from scratch.

Section 2 gives the background to the orthogonal superposition problem using the least-squares criterion.

Section 3 introduces the notion of sufficient statistics and derives the full set of sufficient statistics for the

orthogonal superposition problem. Section 4 provides the update rules to update the superposition pa-

rameters in constant-time, building on the sufficient statistics of constituent superpositions. Section 5

describes an approach to speed up the diagonalization step used in the Kearsley approach. Finally, the

article ends with an experimental evaluation of performance gain achieved using the results of this work.
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2. ORTHOGONAL SUPERPOSITION

Formally let U = fu1‚ � � � ‚ ungand V = fv1‚ � � � ‚ vng denote two vector sets with one-to-one correspon-

dence. In this article we consider vectors in three dimensions. Let the (x, y, z) components of each ui be

represented here as (ui (x), ui(y), u(z)). (Similar representation holds for vi or any other vector.)

The least-squares superposition problem is an optimization problem that involves finding the orthogonal

rotation R and translation t with the optimality criterion defined as follows:

E = min kRU + t -Vk2 = min
Xn

i = 1

kRui + t - vik2 = min
Xn

i = 1

ÆRui + t - vi‚ Rui + t - viæ

where Æ � ‚ �æ denotes the inner product between the stated terms, R is a 3 · 3 pure rotation matrix, and t is a

translation vector.

Under this least-squares criterion, the optimal translation can be made independent of the optimal

rotation as follows. Differentiating E with respect to t and evaluating it at its extremum

qE
qt

=
q
qt

Xn

i = 1

ÆRui + t - vi‚ Rui + t - viæ = 2
Xn

i = 1

q(Rui + t - vi)

qt
(Rui + t - vi) = 0

0
Xn

i = 1

Rui + t - vi = 00t =
Pn

i = 1 vi

n
- R

Pn
i = 1 ui

n
= Centroid(V) - R Centroid(U)

It follows that moving each of the vector sets to an origin at its centroid, about which the rotation is defined,

gives us a modified (but equivalent) objective, which is independent of the translation t : E =
min

Pn
i = 1

jRu0i - v0ij
2
, where u0i = ui - Centroid(U) and v0i = vi - Centroid(V).

Kearsley (1989) proposed an elegant method that removes the non linear aspect to this least-squares

problem and transforms it into an eigenvalue problem of the form Qq = kq, or in expanded termsP
(x2

m + y2
m + z2

m)
P

(ypzm - ymzp)
P

(xmzp - xpzm)
P

(xpym - xmyp)P
(ypzm - ymzp)

P
(x2

m + y2
p + z2

p)
P

(xmym - xpyp)
P

(xmzm - xpzp)P
(xmzp - xpzm)

P
(xmym - xpyp)

P
(x2

p + y2
m + z2

p)
P

(ymzm - ypzp)P
(xpym - xmyp)

P
(xmzm - xpzp)

P
(ymzm - ypzp)

P
(x2

p + y2
p + z2

m)

0
BBB@

1
CCCA

q1

q2

q3

q4

0
BB@

1
CCA = k

q1

q2

q3

q4

0
BB@

1
CCA (1)

As seen above, Q is a 4 · 4 square symmetric matrix and q = (q1, q2, q3, q4)T are the unknown (to be

solved) quaternion components associated with a 3D rotation, and k is an (unknown) eigenvalue. In the

eigenvalue problem defined in Equation 1, the notation xm, a scalar quantity, denotes the component-wise

difference v0i(x) - u0i(x) (equivalent notations for ym and zm), and the scalar xp denotes the component-wise

sum v0i(x) + u0i(x) (equivalently, yp and zp). From this point onwards, we use the term quaternion matrix to

refer to the 4 · 4 matrix Q shown in Equation 1.

Diagonalizing Q yields four eigenvalues and (corresponding) eigenvectors. Kearsley (1989) shows that

the eigenvector corresponding to the smallest eigenvalue, kmin, corresponds to the best rotation producing

the least squares error, and the r.m.s.d. is computed as

ffiffiffiffiffiffiffiffi
kmin

n

r
The computational effort required to solve the rigid-body superposition problem using Kearsley’s

quaternion approach (or equivalently Kabsch’s approach) grows linearly with the number of vectors being

superimposed. In Kearsley’s approach this is dominated by the computation of the quaternion matrix Q

where each of 10 distinct terms in the matrix requires O(n) effort. The diagonalization of Q is independent

of n and shows a rapid convergence with numerical methods such as Jacobi’s diagonalization algorithm

( Jacobi, 1846).

3. SUFFICIENT STATISTICS

We note that this rigid-body superposition problem is a geometric instance of the general regression

problem using total least-squares, where a regression line has to be determined that minimizes the sum-of-

squares error with respect to the observed data points.
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The error terms of this regression problem are assumed to be normally distributed as N (0‚ r), where the

mean l is 0 and r is the standard deviation, which is minimized by the problem. In fact, the least squares

estimator of r is also its maximum likelihood estimator.

More formally, consider the standard normal distribution of some random variable x:

N (xjl‚ r) =
1ffiffiffiffiffiffi
2p
p

r
exp -

(x - l)2

2r2

� �

This normal density can be reparameterized into a general form denoting the family of exponential

distributions: f (xjg) = h(x)g(g) exp(gT U(x)) where h(x) = 1ffiffi
p
p ‚ g(g2) = ffiffiffiffiffiffiffiffiffi- g2

p
exp

g2
1

4g2

� �
‚ gT = ( l

r2 ‚ - 1
2r2 ), and

UT(x) = (x, x2).

This transformation can be used to show certain important properties that allows efficient computation of

maximum likelihood estimators of l and r.

Considering a sample set of observations that are normally distributed X = fx1‚ x2‚ � � � ‚ xng. The likeli-

hood for these samples is given by:

f (Xjg) =
Yn

i = 1

h(xi)

 !
(g(g))n exp (ðgT

Xn

i = 1

u(xi)Þ

Taking natural logarithms on both sides gives us the log likelihood:

log ( f (Xjg)) = j + n log(g(g)) + gT
Xn

i = 1

U(xi)

where j =
Pn
i = 1

log (h(xi)) is a term independent of g.

To find the maximum likelihood estimators ĝ, take the gradient with respect to g and set to 0. This results

in:

n=ĝ[ log(g(ĝ))] +
Xn

i = 1

U(xi) = 00 - =ĝ[ log(g(ĝ))] =
1

n

Xn

i = 1

U(xi) =
- 1

g(ĝ)
=ĝg(ĝ) =

1

n

Xn

i = 1

U(xi)

Notice that maximum likelihood estimate ĝ depends on the statistic
Pn
i = 1

U(xi) rather than the individual data.

This suggests that to obtain the maximum likelihood estimate we do not need the data explicitly as it can be

derived from that statistic. This sufficiency to derive the maximum likelihood estimator without explicit

consideration of data makes
Pn
i = 1

U(xi) a sufficient statistic for the exponential family of functions. For

normal distribution, we saw earlier that U(xi) = (xi, xi
2) gives the sufficient statistics of

Pn
i = 1

xi and
Pn
i = 1

x2
i

(Hogg and Craig, 1994).

3.1. Sufficient statistics for orthogonal superposition

For the orthogonal superposition problem, each error term, ei = Rui
0 - vi

0, is also assumed to be normally

distributed, that is, ei~N (l = 0‚ r). We now derive the sufficient statistics for r of ei terms, which is

equivalent to the r.m.s.d. after least-squares superposition. The likelihood of the observed normally dis-

tributed errors after superposition, E = fe1‚ . . . ‚ eng, can be written as:

f (e1‚ . . . ‚ enjr) =
Yn

i = 1

(2pr2) - 1
2 exp( -

1

2r2
kRui

0 - vi
0k2) = (2pr2) - n

2 exp( -
1

2r2

Xn

i = 1

kRui
0 - vi

0k2)

Let’s examine the decomposition of any ei term:

e2
i = kRui

0 - vi
0k2 = kui

0k2 + kvi
0k2 - 2vi

0T Rui
0: (2)

From Equation 1, the matrix Q is made up of terms of the form Am = v0i(A) - u0i(A) and Ap = v0i(A) + u0i(A)
where each A and B take the values x, y, or z denoting the vector components. Rewriting, we get

v0i(A) =
Ap + Am

2
and u0i(A) =

Ap - Am

2
: The first two terms on the right-hand side of Equation 2 can be

expanded as follows:
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kui
0k2 + kvi

0k2 = (u0i(x)2 + u0i(y)2 + u0i(z)2) + (v0i(x)2 + v0i(y)2 + v0i(z)2)

=
1

2
(x2

m + x2
p + y2

m + y2
p + z2

m + z2
p) =

1

2

X
A2fx‚ y‚ zg

A2
m +

1

2

X
A2fx‚ y‚ zg

A2
p

(3)

The last term on the right-hand side of Equation 2 can be expanded as vi
0T Ru0i = v0Ti [r1r2r3]u0i where r1, r2,

r3 are column vectors of the 3 · 3 rotation matrix R. Therefore,

v0
T

i Rui
0 = (v0i:r1)ui

0(x) + (v0i : r2)ui
0(y) + (v0i:r3)ui

0(z) (4)

Take the first term on the right-hand side of Equation 4. This can be expanded as:

(v0i:r1)u0i(x) = r11v0i(x)u0i(x) + r12v0i(y)u0i(x) + r13v0i(z)u0i(x)

=
r11

4
(xp + xm)(xp - xm) +

r12

4
(yp + ym)(xp - xm) +

r13

4
(zp + zm)(xp - xm)

=
r11

4
(x2

p - x2
m) +

r12

4
(ypxp - ypxm + ymxp - ymxm)

+
r13

4
(zpxp - zpxm + zmxp - zmxm)

where r11, r12, r13 are the terms in the r1 column vector in R. More generally,

(vi
0:r1)u0i(x) = c1A2

p + c2A2
m + c3ApBp + c4AmBm + c5AmBp (5)

where ck are constants in terms of components of r1.

Similarly, (vi
0: r2)u0i(y) and (vi

0: r3)u0i(z) can be expanded as above and will have the same form as

Equation 5, but with different constants. Therefore, combining Equations 3 and 4, Equation 2 can ex-

pressed as

e2
i = f1

X
A

A2
p + f2

X
A

A2
m + f3

X
8A 6¼B

ApBp + f4

X
8A6¼B

AmBm + f5

X
8A 6¼B

AmBp

where fk are constants. Hence, the likelihood function can be written as

f (e1‚ . . . ‚ enjr) = (2pr2) - n
2 exp -

1

2r2
U

� �
(6)

where U =
Pn
i = 1

f1

P
A

A2
p + f2

P
A

A2
m + f3

P
8A 6¼B

ApBp + f4

P
8A6¼B

AmBm + f5

P
8A 6¼B

AmBp

 !
and A‚ B 2 fx‚ y‚ zg.

Using Equation 6, the negative log-likelihood is given as:

L(e1‚ . . . ‚ enjr) =
n

2
log (2p) + n log r +

1

2r2
U (7)

The maximum likelihood estimate r̂ can be determined by minimizing Equation 7 and evaluating the

corresponding r, that is, qL
qr = 00r̂2 = U

n
.

U involves statistics that do not take into account the data (the coordinates of vector sets) explicitly, and

are sufficient to estimate r (or r.m.s.d.). Therefore, the set of sufficient statistics for the least-squares

superposition problem can be defined as:

C =
Xn

i = 1

AmBm‚
Xn

i = 1

AmBp‚
Xn

i = 1

ApBp

( )
(8)

where A and B take the values {x, y, z}, Am = vi
0(A) - ui

0(A) is the component-wise difference (similarly

Bm), and Ap = vi
0(A) + ui

0(A) is the component-wise sum (similarly Bp). Altogether, the set C consists of

18 distinct statistics. Since we translated the original vector sets, these terms are sufficient to compute

the best rotation for the least-squares superposition problem. Further, the sufficient statistics to com-

pute the translation are simply the component-wise sums for each of the two (untranslated) vector sets

U and V.
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4. UPDATING SUFFICIENT STATISTICS

4.1. Updating sufficient statistics under an addition operation

Consider two pairs of corresponding vector sets: Q4R containing n1 correspondences and S4T
containing n2 correspondences. Let U be defined as a combination of vectors Q and S, and similarly V as a

combination of R and T . Let C1 denote the sufficient statistics of the first pair after superposition and C2

denote the same for the second pair. Define these as:

C1 =
Xn1

i = 1

CmDm‚
Xn1

i = 1

CmDp‚
Xn1

i = 1

CpDp

( )
‚C2 =

Xn2

i = 1

EmFm‚
Xn2

i = 1

EmFp‚
Xn2

i = 1

EpFp

( )
(9)

Where C, D, E, and F take the values x, y, or z, denoting the respective components of vectors in the sets.

Consistent with the previous notation (see Eq. 8), Cp and Cm (similarly Dp and Dm) are the component-wise

sums and differences between corresponding vectors inQ andR. The same definitions hold for Em (and Ep)

and Fm (and Fp), with respect to corresponding vectors in S and T .

We want to use C1 and C2 to compute a new set of sufficient statistics C (defined in Eq. 8) for the

superposition of vector sets U =Q +S with V =R + T . Below we derive the construction of the new

sufficient statistics. The statistics involved in computing the new centroids of the sets U and V,
Pn = n1+ n2

i = 1

ui(A)

and
Pn = n1 + n2

i = 1

vi(A), can be trivially updated using the statistics
Pn1

i = 1

qi(C)‚
Pn1

i = 1

ri(D)‚
Pn2

i = 1

si(E), and
Pn2

i = 1

ti(F). To

compute the remaining statistics in C, we define the following vectors:

a1 = Centroid(U) - Centroid(Q) b1 = Centroid(V) - Centroid(R)

a2 = Centroid(U) - Centroid(S) b2 = Centroid(V) - Centroid(T )

Also define DC
m = b1(C) - a1(C)‚DD

m = b1(D) - a1(D)‚DE
m = b2(E) - a2(E), and DF

m = b2(F) - a2(F), where

A = C = E 2 fx‚ y‚ zg and B = D = F 2 fx‚ y‚ zg. These vectors define the corrections (or updates) required to

the constituent centroids so that the new centroid can be constructed. Using these definitions, the lemma

and corollaries below show the computation of C from C1 and C2.

Lemma 1.
Pn = n1 + n2

i = 1

AmBm =
Pn1

i = 1

CmDm + n1D
C
mD

D
m +

Pn2

i = 1

EmFm + n2D
E
mD

F
m

Proof.

Updated(
Xn1

i = 1

CmDm) =
Xn1

i = 1

[(r0(C) + b1(C)) - (q0(C) + a1(C))][(r0(D) + b1(D)) - (q0(B) + a1(D))]

=
Xn1

i = 1

[(r0(C)r0(D) - q0(C)q0(D) - r0(C)q0(D) + q0(C)r0(D)]

+
Xn1

i = 1

[(b1(C)r0(D) - a1(C)r0(D) - b1(C)q0(D) + a1(C)q0(D)]

+
Xn1

i = 1

[(r0(C)b1(D) - r0(C)a1(D) - q0(C)b1(D) + q0(C)a1(D)]

+
Xn1

i = 1

[(b1(C)b1(D) - a1(C)b1(D) - b1(C)a1(D) + a1(C)a1(D)]

=
Xn1

i = 1

CmDm +
Xn1

i = 1

DC
mDm +

Xn1

i = 1

DD
mCm +

Xn1

i = 1

DC
mD

D
m

=
Xn1

i = 1

CmDm +DC
m

Xn1

i = 1

Dm +DD
m

Xn1

i = 1

Cm + n1D
C
mD

D
m

=
Xn1

i = 1

CmDm + n1D
C
mD

D
m ({

Xn1

i = 1

Cm =
Xn1

i = 1

Dm = 0)
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Similarly, we can show that Updated (
Pn2

i = 1

EmFm) =
Pn2

i = 1

EmFm + n2D
E
mD

F
m. Adding the two updated sta-

tistics, the lemma above follows. -

Corollary 1.
Pn = n1 + n2

i = 1

ApBp =
Pn1

i = 1

CpDp + n1D
C
p D

D
p

� �
+
Pn2

i = 1

EpFp + n2D
E
pD

F
p

� �

Corollary 2.
Pn = n1 + n2

i = 1

AmBp =
Pn1

i = 1

CmDp + n1D
C
mD

D
p

� �
+
Pn2

i = 1

EmFp + n2D
E
mD

F
p

� �

4.2. Updating sufficient statistics under a deletion operation

Let us consider the case where we want to find a superposition under a deletion operation. Let U4V and

Q � U4R � V denote two pairs of vector sets that are in correspondence. We want to compute the

superposition of the vector sets S =UyQ and T =VyR.

Using the same notations as in the previous section, it is straightforward to rearrange Lemma 1 and

Corollaries 1 and 2 to derive the sufficient statistics C2 of the superposition of S with T using the sufficient

statistics C (of U with V) and C1 (of Q with R) as follows.

Corollary 3.
Pn2

i = 1

EmFm =
Pn = n1 + n2

i = 1

AmBm -
Pn1

i = 1

CmDm - n1D
C
mD

D
m - n2D

E
mD

F
m

Corollary 4.
Pn2

i = 1

EpFp =
Pn = n1 + n2

i = 1

ApBp -
Pn1

i = 1

CpDp - n1D
C
p D

D
p - n2D

E
pD

F
p

Corollary 5.
Pn2

i = 1

EmFp =
Pn = n1 + n2

i = 1

AmBp -
Pn1

i = 1

CmDp - n1D
C
mD

D
p - n2D

E
mD

F
p

5. COMPUTING THE R.M.S.D. FROM UPDATED SUFFICIENT STATISTICS
AND OTHER OPTIMIZATIONS

It is easy to see that Kearsley’s 4 · 4 symmetric quaternion matrix Q given in Equation 1 can be

constructed using the updated sufficient statistics derived from the constituent sufficient statistics of pre-

viously superposed vector sets under addition and deletion operations in constant time.

In practice, Q is diagonalized and its eigenvalues and eigenvectors are computed using the numerical

approach of Jacobi, where rotations are applied to Q iteratively, where each rotation annihilates (that is,

sets to zero) a symmetric pair of off-diagonal entries in Q. This approach has a fast convergence, and the

smallest diagonal element (or eigenvalue) is used to derive the r.m.s.d. term, as described in section 2.

However, in some cases, for instance, when a current superposition is extended by just one corre-

spondence, Q changes marginally. Therefore, diagonalization of Q can build on the previous solution. Let

Q denote the quaternion matrix corresponding to the superposition of corresponding vector sets U and V.

From the eigenvalue decomposition theorem, we have Q = SKS - 1, where S is the matrix of eigenvectors

and L is the diagonal matrix of eigenvalues. Also note that Q is a positive semidefinite matrix with the

property QTQ = QQT. This implies that all the eigenvectors are orthogonal to each other. This further

simplifies the decomposition to Q = SLST. Also, since S is an orthogonal matrix, Q = SLST 0L = ST QS.

Now, assume that the corresponding vector sets are augmented from U and V to U0 and V0, resulting in an

updated Kearsley’s matrix Q0. We want to diagonalize this matrix into S0L0S0T . Instead of starting the

Jacobi’s iterative process from scratch, we will use the previously computed eigenvectors (before the vector

sets were augmented), S, and compute ~L as STQ0S. Notice that if the augmentation does not include drastic

changes, then ~L is nearly diagonal (that is, ~L � L0)), thus requiring very few iterations to fully diagonalize
~L. This provides a further optimization to the diagonalization step under update operations on vector sets.

6. RESULTS

6.1. Source code

We wrote a C + + library that allows superposition of vector sets. Superpositions can be carried out from

scratch (using the raw coordinates), or, alternatively, using the sufficient statistics of constituent vector sets
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by operating on them using set addition or deletion operations. The source code is available freely under a

GNU public license online (visit corresponding author’s webpage).

6.2. Consistency of superpositions using sufficient statistics

To validate the consistency of superpositions generated using sufficient statistics (under both addition

and deletion operations discussed in section 4) we undertake the following experiment: 8992 ASTRAL

SCOP (Chandonia et al., 2004; Murzin et al., 1995) domains were used as the source structures from

which superposable fragments were randomly sampled. The general procedure of sampling is as follows.

From the list of source structures, randomly choose any structure. Within this structure choose two

random fragments of lengths l1 and l2, where each fragment has between 10 and 40 residues. These

chosen fragments form the sets Q and S. Yet another structure is again chosen randomly from our source

list, and two fragments are randomly extracted from it with exactly the same length, l1 and l2. These form

the sets R and T . Assuming one-to-one correspondence between Q4R, we compute the sufficient

statistics C1 of their orthogonal superposition. Similarly the sufficient statistics C2 is computed for the

orthogonal superposition between S4T . Define U =Q +S and V =R + T . Iterating this random sam-

pling 100 million times, we computed:

1. the r.m.s.d. of superposition of U4V from scratch (using the raw coordinates in the vector sets);

denote this r.m.s.d. as q1

2. the r.m.s.d. of superposition of U4V, but using the sufficient statistics C1 and C2 of superpositions

of constituent vector sets Q4R, and S4T ; denote this r.m.s.d. as q2.

We measure the difference between the two r.m.s.d. values, Dq = q1 – q2. Over the 100 million samples,

the mean and standard deviation of Dq was found to be zero to a very high precision ( < 10 - 17).

We repeat the same experiment to validate superpositions under deletion operation using sufficient

statistics, where, in each iteration, we compute the superposition of vector sets S4T , with S = ‚UyQ and

T =VyR. This experiment again confirms the same consistency as observed in the test on addition

operation.

6.3. Measuring the performance gain using sufficient statistics for superpositions

We demonstrated in section 4 that superpositions under addition and deletion can be updated in constant

time, building on the sufficient statistics of the constituent sets. This was also validated empirically using

the experiments above. We will now measure the gain in performance using this approach by comparing it

with superpositions built from scratch.

Figures 1a–c show the runtime plots of three sets of randomly chosen 10 million joint superpositions

carried out from scratch (blue line) and compared against the same superpositions updated using sufficient

statistics (green line). We note that these three sets vary in the (average) size of the joint superpositions

being carried out, as indicated in the plot titles.
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FIG. 1. The CPU times (in seconds) performing joint superpositions from scratch (blue line) compared to the same

using sufficient statistics (green line) over 10 million random fragment data sets derived from ASTRAL SCOP

domains. The three plots vary in the average superposition size as indicated in the title.
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Notice that when joint superpositions are carried out from scratch ignoring the sufficient statistics, the

average size of the superpositions introduces a constant factor to the run time. This is expected as each

superposition is linear in the size of the vector sets being superposed. Consequently, the slopes of those blue

lines across the three plots in Figure 1 become steeper with the increase in the superposition size. On the

other hand, when the joint superpositions are updated in constant time, the updates are independent of the

superposition size. This is because any update involves recomputing only a small (fixed) number of

sufficient statistics. This is clearly reflected in the slopes of the green lines being unchanged across the three

plots in Figure 1.

More formally, if jJj is the number of joint superpositions and l is the (average) number of vectors

being superposed, then the first method (blue line in Fig. 1) grows as O(ljJj). Since l / jJj we see a

linear trend (with a steeper gradient accounting for the multiplier l in the complexity term). In com-

parison, the results with sufficient statistics (green line in Fig. 1) grow simply as O(jJj), independent of

the superposition size.

6.4. Using sufficient statistics of superposition in the setting of structural alignments

As discussed in the introduction, a common heuristic employed to compute a structural alignment

between pairs of structures involves collecting a library of well-fitting fragments. This library is refined

by jointly superposing pairs from this library, and a final structural alignment is assembled from these

results.

To test the potential performance gain by using sufficient statistics, we computed the time taken to

undertake an exhaustive joint superposition on libraries of well-fitting fragments corresponding to a small

collection of structural pairs. For each pair of structures chosen, the well-fitting fragments are identified as

those that superpose maximally within an r.m.s.d. threshold of 2 Å. By maximal, we mean those fragment

pairs that cannot be extended any further without violating the r.m.s.d. threshold.

Table 1 shows the run times of joint superpositions performed exhaustively on a small set of protein

structural pairs. As can be seen from the table, using sufficient statistics for superpositions results in up to

an order of magnitude improvement in the run time to carry our these superpositions exhaustively. Since

performing this task without sufficient statistics creates a computational bottleneck, existing structural

alignment programs attempt to drastically restrict the number of superpositions, often trading off structural

alignment quality for speed. We note that the improvements gained from using sufficient statistics for

superpositions will allow these restrictions to be generously relaxed without any effect on the current run

times, but potentially improving the structural alignment quality.

All the above experiments were carried out on a standard laptop with 2.2GHz Intel� CPU and 4GB

RAM.

7. CONCLUSIONS

Optimal superpositions of vector sets are central to identify similarities and differences between spatial

objects. We derived a set of sufficient statistics for the orthogonal superposition problem under the least

squares criterion. These statistics provide an efficient way to operate (via addition and deletion of vectors)

on previously computed superpositions. Our results demonstrate a drastic improvement in the computa-

tional effort required to compute r.m.s.d. based on sufficient statistics. These results are relevant to many

Table 1. Time Taken to Perform Exhaustive Joint Superpositions on a Library of Well-Fitting

Fragment Pairs between Two Structures from Different Families.

Protein Family

Structural pair

wwPDB IDs

Number of joint

superpositions

Average size

of superpositions

Time in seconds

(from scratch)

Time in seconds

(sufficient stats)

Serine proteinases 3EST vs. 2PKA 18,486,240 14 419.6 56.0

Calmodulin-like 1NCX vs. 2SAS 67,820,481 18 1618.4 178.2

Serine proteinases 3EST vs. 2SNV 71,025,321 16 1328.0 187.8

Globins 1HHOA vs. 1HHOB 74,890,441 20 1923.3 194.6
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analyses involving structural data. These include the plethora of algorithms to construct pairwise and

multiple protein structural alignments by assembling fragment pairs. Source code (written in C + + ) to

undertake superpositions implementing our work can be downloaded online.
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