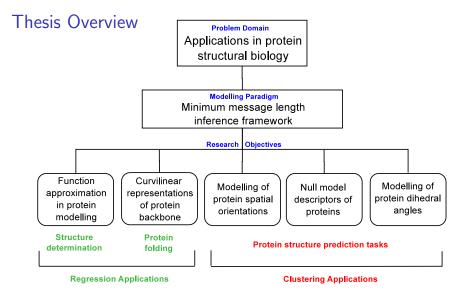
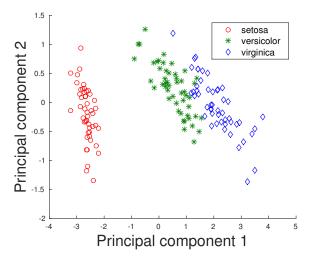
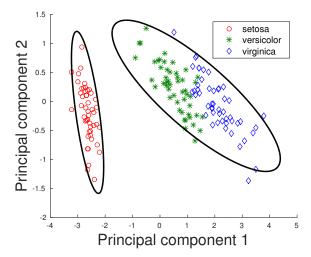
# Statistical Inference Problems with Applications to Computational Structural Biology

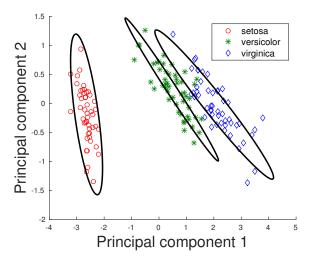
### Parthan Kasarapu


#### Supervisors:

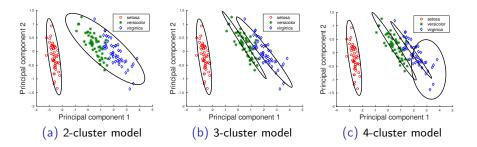
#### Arun Konagurthu & Maria Garcia de la Banda


### 6 Aug 2015


## Presentation Outline


- Thesis Overview
- Motivation
- Research Summary
  - Statistical modelling
  - Applications to protein structural biology
- Thesis contributions
- Conclusion





(日) (同) (日) (日) (日)







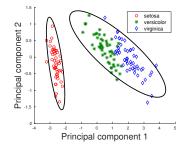




#### Statistical model selection is important.

Statistical Modelling of Protein Structures

### Model selection and inference


Several candidate models: which one to choose?

- A criterion to compare models ...
- Based on the model's complexity and the goodness-of-fit

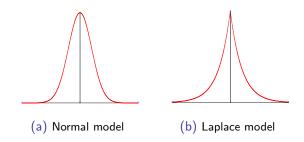
### Model selection and inference

Several candidate models: which one to choose?

- A criterion to compare models ...
- Based on the model's complexity and the goodness-of-fit

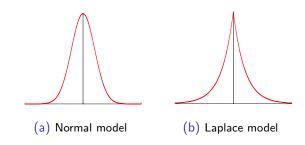


complexity: 2 means + 2 covariance matrices + cluster weights


### The typical model selection criteria ...

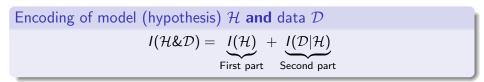
Various model selection criteria are commonly used ...
 AIC, BIC, MDL, ...

< ∃ >

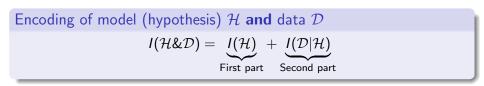

The typical model selection criteria ...

- Various model selection criteria are commonly used ...
  AIC, BIC, MDL, ...
- An example of model selection ...




The typical model selection criteria ...

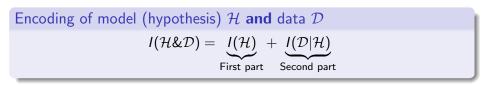
- Various model selection criteria are commonly used ...
  AIC, BIC, MDL, ...
- An example of model selection ...




- Two parameters for each model ( $\mu \& \sigma$ )
- Considered to have the same model complexity (limitation)

## Minimum Message Length (MML) Framework



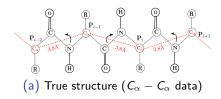

# Minimum Message Length (MML) Framework

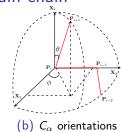


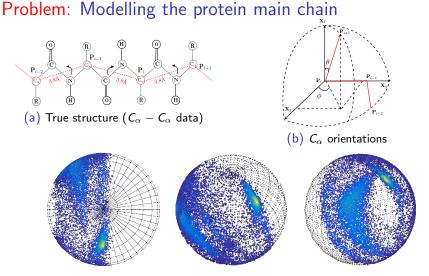
- Two-part message:
  - ► *I*(*H*): model complexity
  - $I(\mathcal{D}|\mathcal{H})$ : goodness-of-fit

Total message length  $I(\mathcal{H}\&\mathcal{D})$  is used to compare models.

# Minimum Message Length (MML) Framework





- Two-part message:
  - ► *I*(*H*): model complexity
  - $I(\mathcal{D}|\mathcal{H})$ : goodness-of-fit
- Total message length  $I(\mathcal{H}\&\mathcal{D})$  is used to compare models.

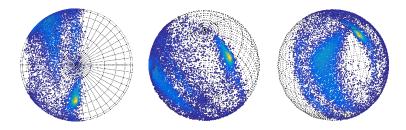

Model with the least message length is optimal

• • = • • = •

### Problem: Modelling the protein main chain








Empirical distribution of  $(\theta, \phi)$ 

Statistical Modelling of Protein Structures

→ < ∃ >

## Modelling of empirical distribution of directional data



#### Mixture modelling (Clustering)

- Data is multi-modal
- Ideal to find data clusters ...
- Modelling using *directional* probability distributions

# Mixture modelling (Clustering)

#### Challenges:

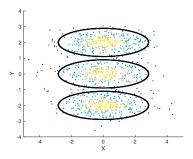
- Determination of the number of components
  - Proposed a search method
- Ability to generalize to any probability distribution
  - No assumptions in terms of the nature of data or distribution

# Mixture modelling (Clustering)

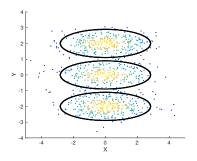
#### **Challenges:**

- Determination of the number of components
  - Proposed a search method
- Ability to generalize to any probability distribution
  - No assumptions in terms of the nature of data or distribution

P. Kasarapu, L. Allison, Minimum message length estimation of mixtures of multivariate Gaussian and von Mises–Fisher distributions, *Machine Learning* (2015) Vol. 100, No. 2-3, Pages 333-378


## Proposed method to determine clusters of data

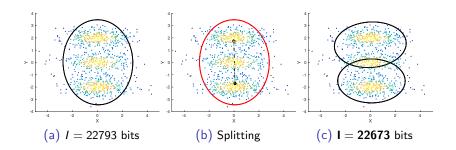
### Basic idea to determine **number** of clusters


Perturb a *K*-component mixture through a series of operations so that the mixture escapes a sub-optimal state to reach an improved state.


- Operations include ...
  - Split
  - Delete
  - Merge

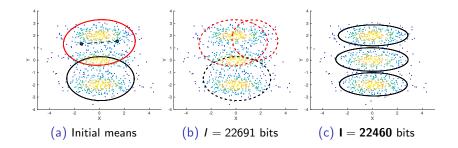
Parthan Kasarapu




Original mixture with three components.

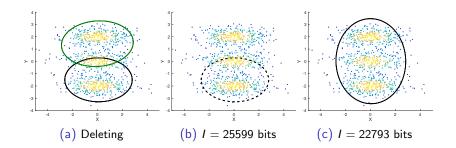





Original mixture with three components.

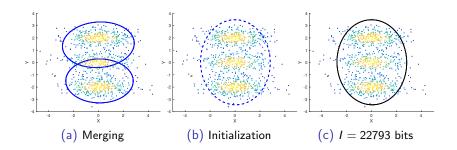
Begin with a one-component mixture.




#### Split operation

A parent component is split to find locally optimal children leading to a (K + 1)-component mixture.

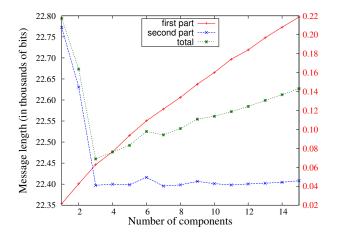



Statistical Modelling of Protein Structures

6 Aug 2015 15 / 33

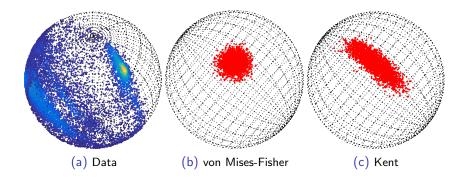


#### Delete operation

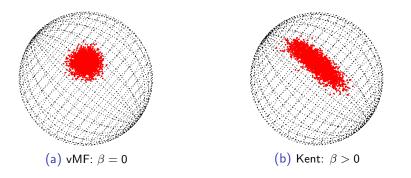

A component is deleted to find an optimal (K - 1)-component mixture.

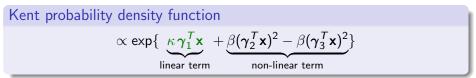


#### Merge operation


A pair of *close* components are merged to find an optimal (K - 1)-component mixture.

## Evolution of the mixture model





Variation of the individual parts of the total message length with increasing number of components (clusters).

### Models of protein data



### Models of protein data





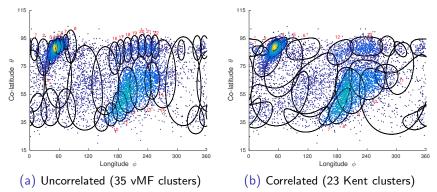
| Part | han | Kasara | pu |
|------|-----|--------|----|
|      |     |        |    |

Statistical Modelling of Protein Structures

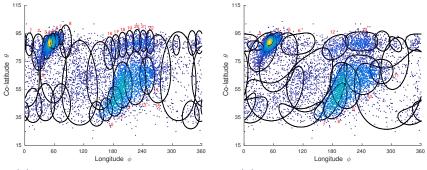
< /₽ > < E > <

# Modelling using Kent distributions

#### **Challenges:**


- Complex mathematical form
  - Parameter estimation is a difficult task

# Modelling using Kent distributions


#### **Challenges:**

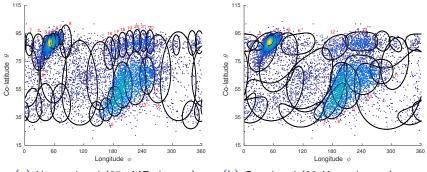
- Complex mathematical form
  - Parameter estimation is a difficult task
- Mixture modelling
  - Cluster data on the spherical surface

### vMF and Kent mixtures of protein directional data



## vMF and Kent mixtures of protein directional data



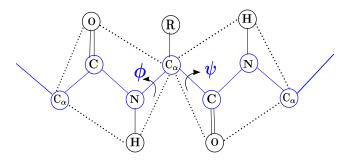

(a) Uncorrelated (35 vMF clusters)

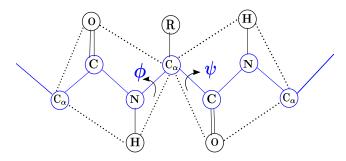
#### (b) Correlated (23 Kent clusters)

#### How are these models useful?

- Discovery of frequently occuring patterns
  - Dedicated clusters for helices, strands, etc.
- Clustering profile can be related to protein function
  - Structurally similar proteins will have similar clusters
- Ab initio protein structure prediction
  - ▶ Random protein generation, homology modelling, template structures, etc.

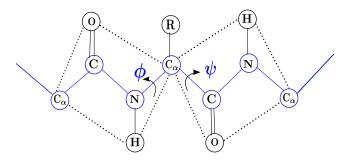
### vMF and Kent mixtures of protein directional data





(a) Uncorrelated (35 vMF clusters)

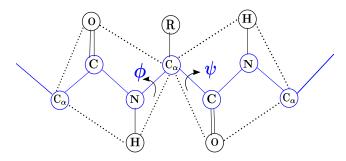
(b) Correlated (23 Kent clusters) - optimal!

| Model        | Total message length | Bits per |
|--------------|----------------------|----------|
| Iviouei      | (millions of bits)   | residue  |
| Uniform      | 6.895                | 27.434   |
| vMF mixture  | 6.449                | 25.656   |
| Kent mixture | 6.442                | 25.630   |


Parthan Kasarapu



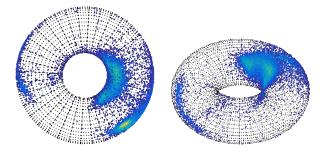



• Modelling protein dihedral angles  $(\phi, \psi)$ 

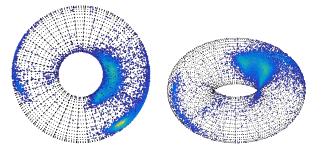
• 
$$\phi, \psi \in [0, 2\pi)$$

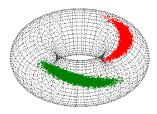


• Modelling protein dihedral angles  $(\phi, \psi)$ 


•  $\phi, \psi \in [0, 2\pi)$  represents a point on the torus



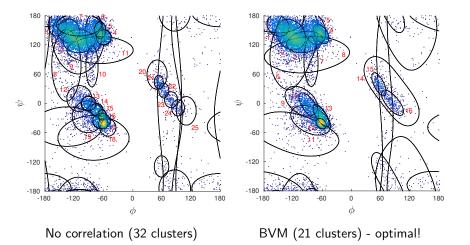

• Modelling protein dihedral angles  $(\phi, \psi)$ 


- $\phi, \psi \in [0, 2\pi)$  represents a point on the torus
- Cannot be modelled using vMF or Kent
- Modelled using mixtures of bivariate von Mises (BVM) distributions

# Distribution of protein dihedral angles



### Distribution of protein dihedral angles



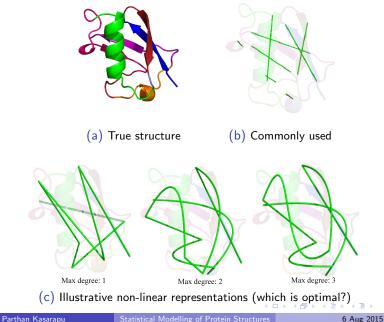



### Example BVM distributions

Statistical Modelling of Protein Structure

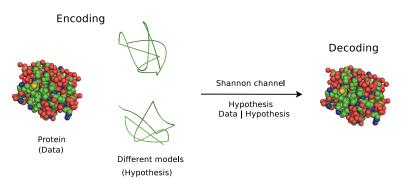
# Bivariate von Mises (BVM) clusters of dihedral angle data




Statistical Modelling of Protein Structures

# Problem: Abstraction of protein folding patterns

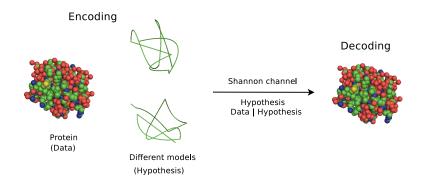
### Motivation


- Rapid protein structure comparison
  - Achieved by effective summarization of folding patterns
- Determine functionally similar proteins
  - Achieved by unique representations

## A novel method to abstract protein folding patterns



15 28 / 33


### Optimal representation



∃ →

▲ @ ▶ < ∃ ▶</p>

# Optimal representation



- MML balances the trade-off between
  - Maximize economy of description (compression)
  - Minimize loss of structural information (preservation of geometry)

4 E N



#### Does not rely on secondary structure assignment



- Does not rely on secondary structure assignment
- Applications in protein structure comparison
  - Database search
  - Comparing the representations



- Does not rely on secondary structure assignment
- Applications in protein structure comparison
  - Database search
  - Comparing the representations fast



- Does not rely on secondary structure assignment
- Applications in protein structure comparison
  - Database search
  - Comparing the representations fast

P. Kasarapu, M. G. de la Banda, A. S. Konagurthu, On representing protein folding patterns using non-linear parametric curves, *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 11(6):1218-1228 (2014)

# Main contributions of my thesis

Theoretical:

- MML-based statistical inference
  - Multivariate von Mises-Fisher (hypersphere)
  - Kent (3D-sphere)
  - Bivariate von Mises (3D-torus)
- Mixture modelling (clustering)
- Non-linear abstractions (regression)

# Main contributions of my thesis

### Theoretical:

- MML-based statistical inference
  - Multivariate von Mises-Fisher (hypersphere)
  - Kent (3D-sphere)
  - Bivariate von Mises (3D-torus)
- Mixture modelling (clustering)
- Non-linear abstractions (regression)

### **Applications:**

- Structural bioinformatics
- High-dimensional text clustering using vMF mixtures
- Analytical tools for biologists and statisticians

### Conclusion

### Data analysis and statistical modelling go hand-in-hand

Rigorous models are useful

< E.

### Conclusion

- Data analysis and statistical modelling go hand-in-hand
  - Rigorous models are useful
- Scope for improving the existing methodologies
  - Extend the current machine learning algorithms

### Conclusion

- Data analysis and statistical modelling go hand-in-hand
  - Rigorous models are useful
- Scope for improving the existing methodologies
  - Extend the current machine learning algorithms
- My research has practical implications in data mining, structural biology, etc.

Thank you.

<ロ> (日) (日) (日) (日) (日)