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Thesis Overview
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Motivation: How many clusters?
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(a) 2-cluster model
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(b) 3-cluster model
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(c) 4-cluster model

Statistical model selection is important.
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Model selection and inference

� Several candidate models: which one to choose?
I A criterion to compare models ...
I Based on the model’s complexity and the goodness-of-fit
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complexity: 2 means + 2 covariance matrices + cluster weights
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The typical model selection criteria ...

� Various model selection criteria are commonly used ...
I AIC, BIC, MDL, ...

� An example of model selection ...

(a) Normal model (b) Laplace model

I Two parameters for each model (µ & σ)
I Considered to have the same model complexity (limitation)
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Minimum Message Length (MML) Framework

Encoding of model (hypothesis) H and data D
I (H&D) = I (H)︸︷︷︸

First part

+ I (D|H)︸ ︷︷ ︸
Second part

� Two-part message:
I I (H): model complexity
I I (D|H): goodness-of-fit

� Total message length I (H&D) is used to compare models.

Model with the least message length is optimal
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Problem: Modelling the protein main chain

(a) True structure (Cα − Cα data)
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(b) Cα orientations

Empirical distribution of (θ, φ)
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Modelling of empirical distribution of directional data

� Mixture modelling (Clustering)
I Data is multi-modal
I Ideal to find data clusters ...
I Modelling using directional probability distributions
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Mixture modelling (Clustering)

Challenges:
� Determination of the number of components

I Proposed a search method

� Ability to generalize to any probability distribution
I No assumptions in terms of the nature of data or distribution

P. Kasarapu, L. Allison, Minimum message length estimation of mixtures
of multivariate Gaussian and von Mises–Fisher distributions, Machine
Learning (2015) Vol. 100, No. 2-3, Pages 333-378
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Proposed method to determine clusters of data

Basic idea to determine number of clusters

Perturb a K -component mixture through a series of operations so that the
mixture escapes a sub-optimal state to reach an improved state.

� Operations include ...
I Split
I Delete
I Merge
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Illustrative example of the search method
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Illustrative example of the search method
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(c) I = 22673 bits

Split operation

A parent component is split to find locally optimal children leading to a
(K + 1)-component mixture.
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Illustrative example of the search method
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Illustrative example of the search method
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(c) I = 22793 bits

Delete operation

A component is deleted to find an optimal (K − 1)-component mixture.
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Illustrative example of the search method
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(a) Merging
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(c) I = 22793 bits

Merge operation

A pair of close components are merged to find an optimal
(K − 1)-component mixture.
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Evolution of the mixture model
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Models of protein data

(a) Data (b) von Mises-Fisher (c) Kent
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Models of protein data

(a) vMF: β = 0 (b) Kent: β > 0

Kent probability density function

∝ exp{ κγγγT1 x︸ ︷︷ ︸
linear term

+β(γγγT2 x)2 − β(γγγT3 x)2︸ ︷︷ ︸
non-linear term

}
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Modelling using Kent distributions

Challenges:
� Complex mathematical form

I Parameter estimation is a difficult task

� Mixture modelling
I Cluster data on the spherical surface
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vMF and Kent mixtures of protein directional data
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(a) Uncorrelated (35 vMF clusters)
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(b) Correlated (23 Kent clusters)

How are these models useful?
� Discovery of frequently occuring patterns

I Dedicated clusters for helices, strands, etc.
� Clustering profile can be related to protein function

I Structurally similar proteins will have similar clusters
� Ab initio protein structure prediction

I Random protein generation, homology modelling, template structures, etc.
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(b) Correlated (23 Kent clusters)

How are these models useful?
� Discovery of frequently occuring patterns

I Dedicated clusters for helices, strands, etc.
� Clustering profile can be related to protein function
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� Ab initio protein structure prediction
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vMF and Kent mixtures of protein directional data
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(a) Uncorrelated (35 vMF clusters)
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(b) Correlated (23 Kent clusters) -
optimal!

Model
Total message length Bits per

(millions of bits) residue

Uniform 6.895 27.434
vMF mixture 6.449 25.656
Kent mixture 6.442 25.630
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Problem: Modelling of protein dihedral angles

� Modelling protein dihedral angles (φ, ψ)
I φ, ψ ∈ [0, 2π) represents a point on the torus
I Cannot be modelled using vMF or Kent
I Modelled using mixtures of bivariate von Mises (BVM) distributions
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Distribution of protein dihedral angles
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Distribution of protein dihedral angles

Example BVM distributions
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Bivariate von Mises (BVM) clusters of dihedral angle data
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Problem: Abstraction of protein folding patterns

Motivation
� Rapid protein structure comparison

I Achieved by effective summarization of folding patterns

� Determine functionally similar proteins
I Achieved by unique representations
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A novel method to abstract protein folding patterns

(a) True structure (b) Commonly used

(c) Illustrative non-linear representations (which is optimal?)

Parthan Kasarapu Statistical Modelling of Protein Structures 6 Aug 2015 28 / 33



Optimal representation

� MML balances the trade-off between
I Maximize economy of description (compression)
I Minimize loss of structural information (preservation of geometry)
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Merits of this abstraction

� Does not rely on secondary structure assignment

� Applications in protein structure comparison
I Database search
I Comparing the representations - fast

P. Kasarapu, M. G. de la Banda, A. S. Konagurthu, On representing
protein folding patterns using non-linear parametric curves, IEEE/ACM
Transactions on Computational Biology and Bioinformatics,
11(6):1218-1228 (2014)
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Main contributions of my thesis

Theoretical:
� MML-based statistical inference

I Multivariate von Mises-Fisher (hypersphere)
I Kent (3D-sphere)
I Bivariate von Mises (3D-torus)

� Mixture modelling (clustering)

� Non-linear abstractions (regression)

Applications:

� Structural bioinformatics

� High-dimensional text clustering using vMF mixtures

� Analytical tools for biologists and statisticians
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Conclusion

� Data analysis and statistical modelling go hand-in-hand
I Rigorous models are useful

� Scope for improving the existing methodologies
I Extend the current machine learning algorithms

� My research has practical implications in data mining, structural
biology, etc.
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Thank you.
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